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Abstract: Join me for a look at my personal selection of Jeff
Hirst’s most impactful theorems. Beyond mathematics, I’ll
share stories and insights from over 30 years of friendship and
intellectual exchange with Jeff, offering a unique perspective on
his work and our time together.

https://academicweb.nd.edu/~cholak/hirst25.pdf


Jeff (CT?), enjoy your (self-defined)
retirement!



Jeff’s big lessons:

• Know your domain of discourse!
• It matters how you say something.



My distillation of these values

• Try be to careful where one works.
• Try to be careful about the details one ignores.
• Be sure to know actually know the details, or someone

who does, or, at least, how to redirect if pressed.



Enough . . . get to the actual theorems!

Theorem (Hirst)
Over RCA0,
• RT1

<∞ is equivalent to BΣ2.
• RT2

2 implies RT1
∞ ≡ BΣ2.

• RT2
<∞ implies BΣ3.

Plan: Discuss references, the mathematical world, draw some
corollaries and questions, introduce understandable equivalent
statements for BΣ2 and BΣ3, and then the proofs.

Does it pays to reflect mathematically?

Thanks to the Erwin Schrödinger International Institute for
Mathematics and Physics.



References

These theorems of Jeff’s are all in his 1987 PhD. thesis,
Combinatorics in Subsystems of Second Order Arithmetic. I first
learned of them when I worked on the first draft of CJS.
Simpson told us about these results and we had Jeff’s
permission to publish them. They all appeared in the first draft
of CJS but some were later removed.

Also see Dzhafarov and Mummert’s book, Definition 3.3.1 and
Section 6.5, and there is also a earlier paper of Frittaion and
Marcone, Linear extensions of partial orders and reverse
mathematics, see Section 2.

My view here is very influenced by my own 1991 PhD. thesis
on c.e. sets.



Mathematical world

(N,P ,+, x,<, 0, 1),

where P ⊆ 2N. We will just call this structure P . Must be at
least a model of PA− + I∆0+ “the exponential function is total”
(for coding). Preferred when N = ω. In that case we want P
closed under Turing reducibility, sometimes closed under paths
through trees, the Turing jump, or the ω-jump.



First Order Part of these Principles

BΣn is equivalent to a Πn+2 sentence. BΣn, for n > 1, is
independent from RCA0.

Corollary (Hirst)

• RCA0 + RT2
2 is not Π4-conservative over RCA0.

• RCA0 + RT2
<∞ is not Π5-conservative over RCA0.



Let’s call the question . . .

Theorem (CJS)

• RCA0 + IΣ2 + RT2
2 + WKL is Π1

1-conservative over
RCA0 + IΣ2.

• RCA0 + IΣ3 + RT2
<∞ + WKL is Π1

1-conservative over
RCA0 + IΣ3.

Question (CJS)
What is the first order theory of RCA0 + RT2

2? of RCA0 + RT2
<∞?

Lots of ongoing work . . .



The 6th animal in a zoo

N = ω is well ordered and satisfies all instances of induction
and hence bounding. In this case REC satisfies BΣ2 but not
WKL.

Theorem (Harrington)
RCA0 + WKL is Π1

1-conservative over RCA0.
Again BΣn, for n > 1, is independent from RCA0 and is
equivalent to a Πn+2 sentence.

Corollary
RT1

<∞ and WKL are independent over RCA0.



Infinite Pigeonhole Principle

If one has infinite many pigeons and puts them into finitely
many pigeonholes, at least one pigeonhole will have infinitely
many pigeons.

The contrapositive: If one have finite many pigeonholes all
containing finitely many pigeons you only have finitely many
pigeons (this has been called FUF).

Think of enumeration of a ball x at stage s into a c.e. set We as a
pigeon being placed into a hole.



The finite union of finite c.e. sets is finite.

Fix n and a computable functions f whose domain includes
[0, n).

∀i < n∃bi

󰀗
∀t(Wf (i),bi

= Wf (i),t)

󰀘
=⇒

∃b∀i < n
󰀗
∀t(Wf (i),b = Wf (i),t)

󰀘

The part in the brackets is Π1 so this an instance of BΣ2. BΣ2
lets one flip the quantifiers moving the bounded quantifier
inward.

In our mathematical world, “x ∈ We,s” is equivalent to a
∆1-formula ϕ(x, s) and every ∆1-formula ϕ(x, s) is equivalent to
“x ∈ We,s”, for some e. So these above instances implies BΣ2.



Strongly Weihrauch Reducible, ≤sW

We will consider the arithmetical statement A(I, S) which says
S is a solution of some instance I of some fixed problem.

Definition
We say A0(I0, S0) is (strongly) Weihrauch reducible over P to
A1(I1, S1) iff, there are two Turing functionals functionals Φ
and Ψ, such that:
• P realizes

∀I0∀S1(A1(Φ(I0), S1)) ⇒ A0(I0, Ψ(I0, S1)).

• If we can do without I0, i.e. just use Ψ(S1) then the
reduction is strong.

• Both Φ(I0) and Ψ(I0, S1) are total functions on all
reasonable oracle (sets) from P .



RT1
<∞ <W RT2

2

Let C0 be a finite coloring of naturals. Let Φ(C0)(x, y) = 1 iff
C0(x) = C0(y). 0 otherwise.

Let H1 be homogenous for Φ(C0). Since there are only finitely
many colors H1 cannot have color 0. So all naturals in H1 have
the same color. Let Ψ(H1) = H1.

If we want the actual color we need the coloring C0. Let h ∈ H1
and Ψ(C0, H1) = C0(h).

Another option is to use the coloring Φ(C0)(x, y) = C0(x) and
work from SRT2

<∞. The coloring is stable, limy Φ(C0)(x, y)
exists.

RT1
<∞ is computably true but, by Spector, RT2

2 is not. So
RT2

2 ≰W RT1
<∞.



What about a similar statement for BΣ3?

The intersection of finite many cofinite c.e. sets is cofinite.

∀i < n∃bi

󰀗
∀x > bi∃s(x ∈ Wf (i),s)

󰀘
=⇒

∃b∀i < n
󰀗
∀x > b∃s(x ∈ Wf (i),s)

󰀘

The part in the brackets is Π2 so this an instance of BΣ3. As
above these instances implies BΣ3.



The contrapositive

The finite intersection of finite many c.e. sets is not cofinite then
one of the c.e. sets is not cofinite.

The instance I here is a collection of c.e. sets {Wf (e)|e < n}. The
solution S is just an e. A(I, S) here just checks that if the
intersection of the sets is not cofinite then Wf (e) is not cofinite.

Lets call this principal FICF.



FICF <W SRT2
<∞

Our instance I is a collection of c.e. sets {Wf (e)|e < n} whose
intersection is not cofinite. Given a pair x, s. If there is a least ys
and a least es such that x ≤ ys ≤ s and y /∈ Wf (es),s, let
Φ(I)(x, s) = es. Otherwise let Φ(I)(x, y) = n.

For all x, there is a least yx ≥ x and a least ex where y /∈ Wf (ex).
lims ys = yx and lims es = ex. This is coloring is stable and the
limit color is not k since the intersection is not cofinite.

Let H1 be homogenous for Φ(I) with color e < n. Ψ(H1) = e.
Wf (e) is not cofinite. {yx|x ∈ H1} ∩ Wf (e) = ∅.



What about BΣn, where n > 3?

Lemma
• {e|We is finite} is Σ2-complete.
• {e|We is cofinite} is Σ3-complete.

Nothing similar for n > 3.



THANKS


