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Context and Motivation



Reverse Mathematics

e RCAq - Second order arithmetic with comprehension for computable

sets.
e ACA( - RCAq plus arithmetical comprehension.

° ACA6 - RCAy plus the axiom stating that for every n and for every
set X the n-th jump of X exists for all sets X.

e ACAJ - RCAy plus the axiom stating that for every set X the
w-jump of X exists.



Ramsey’s theorem

RT} is the statement: “For every coloring f : [N]” — k, there is an
infinite set H C N such that |f([H]")] = 1".

VnRT" +—— ACA,

RT3 «—— ACA,
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Motivation - Finite Ramsey Theorem

Every 2-coloring of the edges of Kg, there exists some monochromatic
copy of Ks.
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Motivation - Finite Ramsey Theorem

Paris-Harrington (1977) (Strengthened FRT)...not only must the
homogeneous subset exist, but its size must also be larger than the
smallest element in the subset.

D—(

(Exactly) w-large sets. A finite s C N is w-large if |s| > min(s) + 1 and
is exactly w-large if |s| = min(s) + 1. {4,5,6} is not large.
{3,8,14,17,45} is large. {3,8,14,17} is ex.large.



Motivation - False Generalizations

Another motivation comes from Ramsey's theorem for colorings of finite
subsets of N.

Definition

Let RT<“ be the statement that for every coloring of f : [N]<% — 2
there exists an infinite set H such that |f([H]<%)| = 1.
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Motivation - False Generalizations

Another motivation comes from Ramsey's theorem for colorings of finite
subsets of N.

Definition

Let RT<“ be the statement that for every coloring of f : [N]<% — 2
there exists an infinite set H such that |f([H]<%)| = 1.

Large sets give a counterexample:
RT<“ is false. (Take f such that f(s) =0 if |s| > min(s) and f(s) =1
otherwise.)

Ramsey's theorem of exactly large sets is one way out:
(We write [H]' for the set of all the exactly w-large subsets of H. )



Background- Large Ramsey Theorem

Large Ramsey’s Theorem(Pudlak-Rodl (1982) & Farmaki (2002))
(RT3”) For every coloring f : [N]'” — 2, there exists an infinite set H
such that f is constant on [H]'.
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Background- Large Ramsey Theorem

Large Ramsey’s Theorem(Pudlak-Rodl (1982) & Farmaki (2002))
(RT3”) For every coloring f : [N]'” — 2, there exists an infinite set H
such that f is constant on [H]'.

Theorem (Carlucci-Zdanowski (2012)
Over RCAy, RT'“ is equivalent to ACA.

ACA{ +—— RTW

ACA, <— VnRT"

What about consequences of Ramsey's Theorem?



FS, TS and RRT for exactly
large sets




Free, Thin and Rainbow Theorems

Free Set Theorem(Friedman-FOM - 1999)
(FS™): If £ : [N]” — N, then there exists an infinite H C N such that
s € [H]" and f(s) € H imply f(s) € s.

Thin Set Theorem (Friedman-FOM - 1999)
(TS™): If f:[N]” — N, then there exists an infinite set H C N such
that f([H]") # N.
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(RRT}): Let n,k > 0. For all f:[N]” — N if |f‘1(z) < k| for all
z € N, then there exists an infinite H C N such that f is injective on
[H]".



Free, Thin and Rainbow Theorems

Free Set Theorem(Friedman-FOM - 1999)

(FS™): If £ : [N]” — N, then there exists an infinite H C N such that
s € [H]" and f(s) € H imply f(s) € s.

Thin Set Theorem (Friedman-FOM - 1999)
(TS™): If f:[N]” — N, then there exists an infinite set H C N such
that f([H]") # N.

Rainbow Ramsey Theorem

(RRT}): Let n,k > 0. For all f:[N]” — N if |f‘1(z) < k| for all
z € N, then there exists an infinite H C N such that f is injective on
[H]".

Similarly, the generalizations FS<“, TS<% RRT>* fail.
(For TS<¥, take f(s) = |s|.)



Analysis of free and thin set

FS and TS were studied by Cholak, Giusto, Hirst and Jockusch (2001).

e RCA( F FS! but not FS2.
e RCAy F FS"™1 — FSM respectively TSt — TS".
e RCAp - VnFS — VnTS".

10



Analysis of free and thin set

FS and TS were studied by Cholak, Giusto, Hirst and Jockusch (2001).

e RCA( F FS! but not FS2.

e RCAy F FS"™1 — FSM respectively TSt — TS".
e RCAp - VnFS — VnTS".

e RCAy - RTS — FS" — TS™.

10



Analysis of free and thin set

FS and TS were studied by Cholak, Giusto, Hirst and Jockusch (2001).

e RCA( F FS! but not FS2.

e RCAy F FS"™1 — FSM respectively TSt — TS".
e RCAp - VnFS — VnTS".

e RCAy - RTS — FS" — TS™.

Wang(2014) showed that RCAq - FS" — RRTY.

10



Analysis of free and thin set

FS and TS were studied by Cholak, Giusto, Hirst and Jockusch (2001).

e RCA( F FS! but not FS2.

e RCAy F FS"™1 — FSM respectively TSt — TS".
e RCAp - VnFS — VnTS".

e RCAy - RTS — FS" — TS™.

Wang(2014) showed that RCAq - FS" — RRTY.

They have diagonalizing power comparable to Ramsey's Theorem
(Cholak et al. 2001, Csima and Mileti 2009):

Y9 < FS", TS",RRTj < M°.
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Free, Thin, Rainbow are weak

These principles have no coding power.
Wang (2014) FS, TS, RRT do not imply ACAg/code the jump.
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Free, Thin, Rainbow are weak

These principles have no coding power.
Wang (2014) FS, TS, RRT do not imply ACAg/code the jump.

RRTZ"! RRT; ™! RT?
Patey Patey Cholak etal
Rry —Cholaketal oo Cholaketal 7o Csima,Mileti  Hirst Fs?
alvin ang Patey ?
RRT; Csima,Mileti RRT22 Slaman B):g

Observation: TS<¥ <,y FS<v,
What about generalizations to exactly large sets?



Large Free Set

Large Free Set Theorem(FS")

For every coloring f : [N]'” — N there exists an infinite set H free for f.

Define TS'“, RRT'% similarly.
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Large Free Set

Large Free Set Theorem(FS")

For every coloring f : [N]'” — N there exists an infinite set H free for f.

Define TS'“, RRT'% similarly.
Generalization Results:

FS' implies TS'” and RRTY over RCA ( proofs of Cholak et al and
Wang translate verbatim).

RT'“ — RRT“ over RCAq ( Galvin's argument translates verbatim).

What about RTY — FS'“?
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Large Free Set

Theorem (Carlucci, G., Le Houérou, Levy Patey)
FS' <qw RTE.

Let f: [N]' — N be an instance of FS'.
Define g : [N]'“ — 2 by induction.
For H={sp,s1,...} let H ={sp— 1,5 —1,...}.
A concrete example:
3 |7 |11]14
s |2 ]6 |10]

0 if £(s') € {2,6,10}
1 if £(s') > 14,
g(s) =40 if £(s') € (10 13),
1-g(2,7,11) if £(s') <
1—g(3,5,11,14) if f(s') € ( 6) or (6,10),

By RT5” let H C N be an infinite set such that g is constant on [H]'“. 13



Large Free Set Theorem

Claim H' = {sy— 1,5 —1,...,} is f-free.

Let H = {3,7,11,14,22,31...}, then H' = {2,6,10,13,...}.
Pick s' = {2,6,10} € H’, then {3,7,11} € H.

Pick s3 € H to be the the next element of s = {3,7,11,14} .

- H is homogeneous for color 0.

0 if £(s') € {2 6,10}
1 if £(s') >
g(s)=10 if £(s') € (10 13),
1-g(2, 7,11) if £(s') <
1-g(3, 5, 11,14) if f(s') € ( 6) or (6,10),
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Large Free Set Theorem

Claim H' = {sy— 1,5 —1,...,} is f-free.

Let H = {3,7,11,14,22,31...}, then H' = {2,6,10,13,...}.
Pick s' = {2,6,10} € H’, then {3,7,11} € H.

Pick s3 € H to be the the next element of s = {3,7,11,14} .

- H is homogeneous for color 1.

0 if £(s') € {2 6,10}
1 if £(s') >
g(s)=10 if £(s') € (10 13),
1-g(2, 7,11) if £(s') <
1-g(3, 5, 11,14) if f(s') € ( 6) or (6,10),
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Theorem (Carlucci, G., Le Houérou, Levy Patey)

TS and FS™ proves the existence of )““), the w-th jump and
imply ACAJ .
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Ideas from the proof.

e Sufficient to show the statement for TS'“ as any free set will be thin.

e (Dorais et al) For n € N, there exists a computable coloring
f : [N]"*2 — 2" such that every infinite f-thin set computes () .

e For every n > 2, we can get a computable coloring 7, : [N]” — n
such that every infinite f,-thin set uniformly computes 0.

e Combining these instances, we can compute §(“) by tranforming the
()*-computable colorings into a computable coloring f : [N]"*% — N.

e We obtain a coloring f : [N]'* — N such that
f(Sos---15q) = f(51,--.,S). An f-thin set H = {sp, ...} will be
fs,-thin for every i thus, it computes 0. Using the previous point,
H>7 ().
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There is a computable instance of RRTS” with no arithmetical solution
(using the uniformity of Csima-Mileti result RRT3™ — RRTS).

TS <qw RRT!Q(“JH) (translation from Patey's result RRT5™ — TS").

(Corollary) There exists a computable instance of RRT!z(wH) such that

every solution computes ((+).

18



There is a computable instance of RRTS” with no arithmetical solution
(using the uniformity of Csima-Mileti result RRT3™ — RRTS).

TS <qw RRT!Q(“JH) (translation from Patey's result RRT5™ — TS").

(Corollary) There exists a computable instance of RRT!z(wH) such that

every solution computes ((+).

Theorem (Carlucci, G., Le Houérou, Levy Patey)

RRT'“ has the strong cone avoidance property.

18



FS, TS and RRT for generalized
barriers




Barrier Ramsey th m

e Exactly large sets are a barrier, known as the Schreier barrier.
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o Aset B C [N|<¥is a barrier if:

1. base(B) is infinite;

2. Foralls,te B,s ¢ t.

3. For all X € [base(B)]“, there exists an s € B such that s C X.

e RT"“ is also the base case of a generalization of Ramsey’s Theorem
due to Nash-Williams to colorings of barriers.

Theorem (Barrier Ramsey Theorem , RT®)

Let B C [N]<¥. For every finite coloring f : B — k there exists
H € [N]¥ such that the restriction B|H is homogeneous for the coloring.

Marcone and Simpson proved that RTB = ATR, over RCA,.
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Barrier Ramsey theorem

e Exactly large sets are a barrier, known as the Schreier barrier.
o Aset B C [N|<¥is a barrier if:

1. base(B) is infinite;

2. Foralls,te B,s ¢ t.

3. For all X € [base(B)]“, there exists an s € B such that s C X.

e RT"“ is also the base case of a generalization of Ramsey’s Theorem
due to Nash-Williams to colorings of barriers.

Theorem (Barrier Ramsey Theorem , RT®)

Let B C [N]<¥. For every finite coloring f : B — k there exists
H € [N]¥ such that the restriction B|H is homogeneous for the coloring.

Marcone and Simpson proved that RTB = ATR, over RCA,.
What about FSB, TSB and RRTE?
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Free, Thin, Rainbow for barriers

Definition (Free Set Theorem for barriers)

Let B C [N]<“. For every f : B — N then there exists H € [N]“ such
that B|H is free for f.

TSB and RRT® can be defined similarly.

20



Free set for barriers

(Picking up from Cholak, Giusto, Hirst, Jockusch proof)

- Case (f(s) < min(s)) adapts.
The following property of exactly large sets generalizes to barriers.

If s € [X]'“, n€ X and n < min(s) then {n} U {sp, s1,...,5,-1} € [X]"“.

Lemma

Let B be a barrier on X. Let s € B and n € X such that n < min(s).
Then there exists an s' T s such that {n} Us’ € B.
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Free set for barriers

(Picking up from Cholak, Giusto, Hirst, Jockusch proof)

- Case (f(s) < min(s)) adapts.

The following property of exactly large sets generalizes to barriers.

If s € [X]'*, n€ X and n < min(s) then {n} U {so,s1,-..,s,—1} € [X]".
Lemma

Let B be a barrier on X. Let s € B and n € X such that n < min(s).
Then there exists an s' T s such that {n} Us’ € B.

- Case (s; < f(s) < si+1): prove directly by transfinite induction.

Idea: Identify f : B — N with the union of functions f,, : B, — N where
each B, is a "thinning” of B and f,(s) = f({nk} Us) for s € B,,.

Find an infinite sequence S = (nk)ken such that B|S is free for f.
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Diagonalization for general barriers

Clote 1984 /1987 analyzed Ramsey's Theorem for barriers relative to the
transfinite jump hierarchy.

Definition (Canonical barriers B, for a € O)
1. Bi={}
2. Bb={{n} :new}
3. By =By« B, ={{n} Ut} for n € wand t € B, st n < min(t).
4. Bsse = Upen{n} * By * Biapn-1) * - * Bizy(0)-
- Assous proved that each B, is a barrier with base N and order type
ot(B,) = w'l.
- Limit is taken over the canonical barriers B,, a € O.

- Idea here is that canonical barriers of order type w!? in order to
computably approximate (/¢

22



Diagonalization for general barriers

Theorem (Generalized Limit Lemma (Clote, 1984))
There exists a partial computable function g such that for all ordinal
notations a € O, for all e,x € N and s € N<“, g(a, e, x,s) | and

A (x)=y = lim g(a,e,x,5)=y.
seB(a)

23



Diagonalization for general barriers

Theorem (Generalized Limit Lemma (Clote, 1984))
There exists a partial computable function g such that for all ordinal
notations a € O, for all e,x € N and s € N<“, g(a, e, x,s) | and

A (x)=y = lim g(a,e,x,5)=y.
seB(a)

Theorem (Anti-basis theorem for RT2 (Carlucci, G.))
For each a € O there is a computable coloring of the barrier By x B,
with no ({3 -computable thin set.

Proof idea: Jockusch’s AS-omission for RTZ + Clote’s Limit Lemma.

23
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