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Context and Motivation



Reverse Mathematics

• RCA0 - Second order arithmetic with comprehension for computable

sets.

• ACA0 - RCA0 plus arithmetical comprehension.

• ACA
′

0 - RCA0 plus the axiom stating that for every n and for every

set X the n-th jump of X exists for all sets X .

• ACA+
0 - RCA0 plus the axiom stating that for every set X the

ω-jump of X exists.
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Ramsey’s theorem

RTn
k is the statement: “For every coloring f : [N]n → k, there is an

infinite set H ⊆ N such that |f ([H]n)| = 1”.

RT1

RT2
2

RT3
2

∀nRTn

RCA0

ACA0

ACA
′

0
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Motivation - Finite Ramsey Theorem

Every 2-coloring of the edges of K6
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Motivation - Finite Ramsey Theorem

Every 2-coloring of the edges of K6, there exists some monochromatic

copy of K3.
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Motivation - Finite Ramsey Theorem

Paris-Harrington (1977) (Strengthened FRT)...not only must the

homogeneous subset exist, but its size must also be larger than the

smallest element in the subset.

2

4

6

1

3

5

(Exactly) ω-large sets. A finite s ⊆ N is ω-large if |s| ≥ min(s) + 1 and

is exactly ω-large if |s| = min(s) + 1. {4, 5, 6} is not large.

{3, 8, 14, 17, 45} is large. {3, 8, 14, 17} is ex.large.
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Motivation - False Generalizations

Another motivation comes from Ramsey’s theorem for colorings of finite

subsets of N.

Definition

Let RT<ω be the statement that for every coloring of f : [N]<ω → 2

there exists an infinite set H such that |f ([H]<ω)| = 1.

Large sets give a counterexample:

RT<ω is false. (Take f such that f (s) = 0 if |s| > min(s) and f (s) = 1

otherwise.)

Ramsey’s theorem of exactly large sets is one way out:

(We write [H]!ω for the set of all the exactly ω-large subsets of H. )
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Background- Large Ramsey Theorem

Large Ramsey’s Theorem(Pudlák-Rödl (1982) & Farmaki (2002))

(RT!ω
2 ) For every coloring f : [N]!ω → 2, there exists an infinite set H

such that f is constant on [H]!ω.

Theorem (Carlucci-Zdanowski (2012)

Over RCA0, RT
!ω is equivalent to ACA+

0 .

ACA+
0 RT!ω

∀nRTnACA
′

0

Question

What about consequences of Ramsey’s Theorem?

8



Background- Large Ramsey Theorem

Large Ramsey’s Theorem(Pudlák-Rödl (1982) & Farmaki (2002))
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FS, TS and RRT for exactly

large sets



Free, Thin and Rainbow Theorems

Free Set Theorem(Friedman-FOM - 1999)

(FSn): If f : [N]n → N, then there exists an infinite H ⊆ N such that

s ∈ [H]n and f (s) ∈ H imply f (s) ∈ s.

Thin Set Theorem (Friedman-FOM - 1999)

(TSn): If f : [N]n → N, then there exists an infinite set H ⊆ N such

that f ([H]n) ̸= N.

Rainbow Ramsey Theorem

(RRTn
k): Let n, k > 0. For all f : [N]n → N if |f −1(z) ≤ k| for all

z ∈ N, then there exists an infinite H ⊆ N such that f is injective on

[H]n.

Similarly, the generalizations FS<ω,TS<ω,RRT<ω
2 fail.

(For TS<ω, take f (s) = |s|.)
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Analysis of free and thin set

FS and TS were studied by Cholak, Giusto, Hirst and Jockusch (2001).

• RCA0 ⊢ FS1 but not FS2.

• RCA0 ⊢ FSn+1 → FSn respectively TSn+1 → TSn.

• RCA0 ⊢ ∀nFS → ∀nTSn.

• RCA0 ⊢ RTn
2 → FSn → TSn.

Wang(2014) showed that RCA0 ⊢ FSn → RRTn
2.

They have diagonalizing power comparable to Ramsey’s Theorem

(Cholak et al. 2001, Csima and Mileti 2009):

Σ0
n < FSn,TSn,RRTn

2 ≤ Π0
n.
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Free, Thin, Rainbow are weak

These principles have no coding power.

Wang (2014) FS,TS,RRT do not imply ACA0/code the jump.

RT n
2 FSn TSn

RRT n+1
2

RRT n
2

RRT 2n+1
2

RRT 2
2 BΣ0

2

RT 2
2

FS2
Cholak etal Cholak etal

Patey Patey

Patey

Slaman

Galvin Wang

Csima,Mileti

Cholak etal

?

Csima,Mileti Hirst

Observation: TS<ω ≤sW FS<ω.

Question: What about generalizations to exactly large sets?
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Large Free Set

Large Free Set Theorem(FS!ω)

For every coloring f : [N]!ω → N there exists an infinite set H free for f .

Define TS!ω,RRT!ω similarly.

Generalization Results:

FS!ω implies TS!ω and RRT!ω
2 over RCA0 ( proofs of Cholak et al and

Wang translate verbatim).

RT!ω → RRT!ω
k over RCA0 ( Galvin’s argument translates verbatim).

What about RT!ω
2 → FS!ω?
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Large Free Set

Theorem (Carlucci, G., Le Houérou, Levy Patey)

FS!ω ≤sW RT!ω
2 .

Let f : [N]!ω → N be an instance of FS !ω.

Define g : [N]!ω → 2 by induction.

For H = {s0, s1, . . .} let H ′ = {s0 − 1, s1 − 1, . . .}.
A concrete example:
s 3 7 11 14

s’ 2 6 10 13

g(s) =



0 if f (s ′) ∈ {2, 6, 10}
1 if f (s ′) > 14,

0 if f (s ′) ∈ (10, 13),

1− g(2, 7, 11) if f (s ′) < 2, (say f (s ′) = 1)

1− g(3, 5, 11, 14) if f (s ′) ∈ (2, 6) or (6, 10), (say f (s ′) = 4)

By RT!ω
2 let H ⊆ N be an infinite set such that g is constant on [H]!ω. 13



Large Free Set Theorem

Claim H ′ = {s0 − 1, s1 − 1, . . . , } is f -free.

Let H = {3, 7, 11, 14, 22, 31...}, then H′ = {2, 6, 10, 13, . . .}.

Pick s ′ = {2, 6, 10} ∈ H ′, then {3, 7, 11} ∈ H.

Pick s3 ∈ H to be the the next element of s = {3, 7, 11, 14} .

- H is homogeneous for color 0.

g(s) =



0 if f (s ′) ∈ {2, 6, 10}
1 if f (s ′) > 14,

0 if f (s ′) ∈ (10, 13),

1-g(2, 7,11) if f (s ′) < 2, (say f (s ′) = 1)

1-g(3, 5, 11,14) if f (s ′) ∈ (2, 6) or (6, 10), (say f (s ′) = 4)
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Lower Bounds

Theorem (Carlucci, G., Le Houérou, Levy Patey)

TS!ω and FS!ω proves the existence of ∅(ω), the ω-th jump and

imply ACA+
0 .
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Lower Bounds

Ideas from the proof.

• Sufficient to show the statement for TS !ω as any free set will be thin.

• (Dorais et al) For n ∈ N, there exists a computable coloring

f : [N]n+2 → 2n such that every infinite f-thin set computes ∅′
.

• For every n ≥ 2, we can get a computable coloring fn : [N]n → n

such that every infinite fn-thin set uniformly computes ∅′
.

• Combining these instances, we can compute ∅(ω) by tranforming the

∅k -computable colorings into a computable coloring f : [N]n+k → N.

• We obtain a coloring f : [N]!ω → N such that

f (s0, . . . , ss0) = fs0(s1, . . . , ss0). An f -thin set H = {s0, . . .} will be

fsi -thin for every i thus, it computes ∅′
. Using the previous point,

H ≥T ∅(ω).

17



Lower bounds

There is a computable instance of RRT!ω
2 with no arithmetical solution

(using the uniformity of Csima-Mileti result RRTn+1
2 → RRTn

2).

TS!ω ≤sW RRT
!(ω+1)
2 (translation from Patey’s result RRTn+1

2 → TSn).

(Corollary) There exists a computable instance of RRT
!(ω+1)
2 such that

every solution computes ∅(ω).

Theorem (Carlucci, G., Le Houérou, Levy Patey)

RRT!ω has the strong cone avoidance property.
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FS, TS and RRT for generalized

barriers



Barrier Ramsey theorem

• Exactly large sets are a barrier, known as the Schreier barrier.

• A set B ⊆ [N]<ω is a barrier if:

1. base(B) is infinite;

2. For all s, t ∈ B, s ̸⊂ t.

3. For all X ∈ [base(B)]ω, there exists an s ∈ B such that s ⊏ X .

• RT!ω is also the base case of a generalization of Ramsey’s Theorem

due to Nash-Williams to colorings of barriers.

Theorem (Barrier Ramsey Theorem , RTB)

Let B ⊆ [N]<ω. For every finite coloring f : B → k there exists

H ∈ [N]ω such that the restriction B|H is homogeneous for the coloring.

Marcone and Simpson proved that RTB ≡ ATR0 over RCA0.

Question: What about FSB,TSB and RRTB?

19
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Free, Thin, Rainbow for barriers

Definition (Free Set Theorem for barriers)

Let B ⊆ [N]<ω. For every f : B → N then there exists H ∈ [N]ω such

that B|H is free for f .

TSB and RRTB can be defined similarly.

20



Free set for barriers

(Picking up from Cholak, Giusto, Hirst, Jockusch proof)

- Case (f (s) < min(s)) adapts.

The following property of exactly large sets generalizes to barriers.

If s ∈ [X ]!ω, n ∈ X and n < min(s) then {n} ∪ {s0, s1, . . . , sn−1} ∈ [X ]!ω.

Lemma

Let B be a barrier on X. Let s ∈ B and n ∈ X such that n < min(s).

Then there exists an s ′ ⊏ s such that {n} ∪ s ′ ∈ B.

- Case (si < f (s) < si+1): prove directly by transfinite induction.

Idea: Identify f : B → N with the union of functions fnk : Bnk → N where

each Bnk is a ”thinning” of B and fn(s) = f ({nk} ∪ s) for s ∈ Bnk .

Find an infinite sequence S = (nk)k∈N such that B|S is free for f.

21
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Diagonalization for general barriers

Clote 1984/1987 analyzed Ramsey’s Theorem for barriers relative to the

transfinite jump hierarchy.

Definition (Canonical barriers Ba for a ∈ O)

1. B1 = {}
2. B2 = {{n} : n ∈ ω}
3. B2a = B2 ∗ Ba = {{n} ∪ t} for n ∈ ω and t ∈ Ba st n < min(t).

4. B3·5z =
⋃

n∈N{n} ∗ B{z}(n) ∗ B{z}(n−1) ∗ · · · ∗ B{z}(0).

- Assous proved that each Ba is a barrier with base N and order type

ot(Ba) = ω|a|.

- Limit is taken over the canonical barriers Ba, a ∈ O.

- Idea here is that canonical barriers of order type ω|a) in order to

computably approximate ∅α.
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Diagonalization for general barriers

Theorem (Generalized Limit Lemma (Clote, 1984))

There exists a partial computable function g such that for all ordinal

notations a ∈ O, for all e, x ∈ N and s ∈ N<ω, g(a, e, x , s) ↓ and

φ∅(a)

e (x) = y =⇒ lim
s∈B(a)

g(a, e, x , s) = y .

Theorem (Anti-basis theorem for RTB (Carlucci, G.))

For each a ∈ O there is a computable coloring of the barrier B2 ∗ Ba

with no ∅(a)-computable thin set.

Proof idea: Jockusch’s ∆0
2-omission for RT 2

2 + Clote’s Limit Lemma.
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notations a ∈ O, for all e, x ∈ N and s ∈ N<ω, g(a, e, x , s) ↓ and

φ∅(a)

e (x) = y =⇒ lim
s∈B(a)

g(a, e, x , s) = y .

Theorem (Anti-basis theorem for RTB (Carlucci, G.))

For each a ∈ O there is a computable coloring of the barrier B2 ∗ Ba

with no ∅(a)-computable thin set.

Proof idea: Jockusch’s ∆0
2-omission for RT 2

2 + Clote’s Limit Lemma.
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