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Theorem (McAloon; Friedman, Simpson)
RCAq - RT < ACA;,.
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From Jeff Hirst's thesis

» RCAg - RTL < BX}

> RCAg - RT2 _ = BX}

> RCAq - RT3 = BX)

» Therefore, WKLq does not imply any of RT1<OO, RT2<OO, RT%.

» Moreover, there is an w-model of WKLg + —~RT3.

In 2018, Slaman and Yokoyama proved that RCAg + RT2<Oo
is Mi-conservative over BXY.
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» The first-order consequences of RCAg 4 RT3 follow from 13,
(Cholak, Jockusch, Slaman, 2001)

» RCAg + RT3 ¥ WKLy
(Liu, 2012)

» RCAq + RT3 is Mi-conservative over RCAg + BXY iff it is
VMN2-conservative over RCAq + BX9
(Fiori Carones, Kotodziejczyk, Wong, Yokoyama, 2024)

» RCAq + RT3 is VI3-conservative over RCAg + BX9
(Le Houérou, Patey, Yokoyama, 2024).
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A weaker base theory

RCA is obtained from RCAg by replacing IZ9 with A9
and the axiom exp:= ‘2% is a total function’.
It was introduced by Simpson and Smith in 1986.

» The first-order part of RCAj is axiomatized by BX; + exp.

» The provably recursive functions of RCA( are precisely the
elementary recursive ones.

» Over RCAj, RCAy is equivalent to the statement ,For every
unbounded set A there is a bijection f: N — A’.

Why RCA;?
P It might be relevant for some results for RCAy.
» To calibrate logical strength of theorems provable in RCA.
» To track uses of IZ(l) in mathematical proofs.

» To strengthen some reversals known to hold over RCAy.
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I is a ¥9-definable proper cut.
(cut = an initial interval closed

under successor function)

A is a A9-definable unbounded
set enumerated in increasing
order (only) by the cut /.

We will consider the structure
(1,Cod(M/I)), where
Cod(M/1) is the family of
coded subsets of /:

X € Cod(M/1) iff Is€ M s.t.

s is (a code for) a finite set
and sN/ = X.

SSy(M):= Cod(M/w)



For all n, k > 2, RCAq proves RT} = RT[ ;.

Thus, from now on, we consider only RT? for n > 2.
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Equivalence with relativization to a X9-definable cut

Theorem
Let (M, X) E RCA} and | is a proper ¥9-definable cut in M. Then

(M, X)ERTY iff (I,Cod(M/I))E RTS.
Corollary
Let (M, X) E RCAG + —IX1. Then

(M, X)ERTZ iff (M,A;-Def(M)) E RTY.

Chong-Mourad coding lemma
Let (M, X)E RCA; and | be a cutin M. If both Y C | and I\'Y are
Y 9-definable in M, then Y € Cod(M/I).
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Theorem
RCA§ + RT% is VNY-conservative over RCA}.

Theorem
RCAG + RT3 is not M4-conservative over RCA.

RCA; + RT7 proves the following M, sentence:
-l = Al-RTg7

where A,-RT7 says: For every Ay-definable 2-colouring of [N]" there is
a Ay-definable infinite homogeneous set.
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Every Ay-RT3 is false in the standard model but how much
of induction is needed to disprove it?

Lemma
Let £ > 1. Then:

1. 1%, F =Ay-RT3,
2. the theory By 4 exp + Ay-RT3 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).

For (2), consider a model M F BX, + —I%, with ¥,-definble w and
SSy(M) E RT5. Apply the ‘cut equivalence theorem’ to the
structure (M, Ay-Def(M)).
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Provability of computational bounds on RT]

Lemma
Let n >3 and (M, X) = RCA; + RT4. If M |= 1%, then 0) € X
As a consequence, Api1-Def(M) C X and M |=BX,4.

For £ = 1 take Jockusch’s computable colouring of triples whose
solutions compute 0’: for x < y < z let ¢(x, y,z) = 0 if there is

a Turing machine with a code below x that halts below z but not
below y. By RT%, there is a homogeneous set H, and by 1¥; it
must have colour 1. To check whether e € 0’ take any x,y € H
such that e < x < y and execute the computation . on e until
the y-th step.

For the other cases proceed by induction up to £ and relativize the
case { = 1.
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First-order consequences: n > 3

Let R” denote the first-order consequences of RT5 over RCA;.

Theorem
Let n > 3. The theory R" is axiomatized by BY1 + exp and the set:

v

{BZ@ = (BZ(+1 \Y Ag—RTg)Z {> 1}.

R" is strictly in between IB + exp and PA,
where IB :=BX; + {IX; = BX/1: ¢ > 1}.

Thus, R” is not finitely axiomatizable.
The lM3-part of R is BX1 + exp.

For ¢ > 1, its Ny 3-part lies strictly in between
BX; +exp+ /\1§jgz (IZ; = BXj;1) and BX,i;.
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R? follows from 1%, (By Cholak, Jockusch, Slaman).
Over —1¥1, R? is equivalent to Al—RTg.
The M3-part of R? is BX; + exp.

The M4-part of R? is strictly weaker then BY, but does not
follow from 1%1:

RCA{ 4+ RT3 F CX, but IX; ¥ CX,,

where CX is a [s-sentence saying ‘there is no Xo-definable injection
f: N — N with a bounded range’.
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An L5 sentence o is called pSO if there exists a sentence v of

second-order logic in a relational language (<, Ry, ..., Rk) such
that o expresses:
For every relations Ry, ..., Rx on N and every infinite set

D C N, there exists an infinite set H C D such that
(H,<,R1,....,Rx) E~.

The ‘cut equivalence theorem’ holds for any pSO sentence o:
(M, X)E o iff (I,Cod(M/I))E o,

where (M, X) E RCA} and [ is a ¥9-definable proper cut.
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More general results

Theorem
Let o be a pSO sentence. Then the following are equivalent:

(i) RCA§ + o is Mi-conservative over RCA},
(i) RCA§+ —IZ9 + o,
(iii) WKL - o
Moreover, if WKLg I/ o, then RCAG + o is not arithmetically
conservative over RCAg.

Theorem
Let o be a pSO sentence such that there exists an w-model of the
theory WKLo +o. Then WKL + o is VIM3-conservative over RCA}.



Other Ramsey-like principles

CAC =

ADS =

CRT3 =

For every partial order (N, <) there exists an infinite
set S C N which is a <-chain or =<-antichain.

For every linear order (N, <) there exists an infinite
set S C N which is an <-ascending or =<-descending
sequence.

for every c: [N]2 — 2 there exists an infinite S C N
such that c[S is stable, i.e. for every x € S there
exists y € S such that for all z € S if z > y, then

c(x,y) = c(x, z).



Other Ramsey-like principles

CAC = For every partial order (N, <) there exists an infinite
set S C N which is a <-chain or =<-antichain.

ADS = For every linear order (N, <) there exists an infinite
set S C N which is an <-ascending or =<-descending
sequence.

CRT3 = for every c: [N]?> — 2 there exists an infinite S C N
such that c[S is stable, i.e. for every x € S there
exists y € S such that for all z € S if z > y, then

c(x,y) = c(x, z).

Over RCAq we have: RT3 = CAC = ADS = CRT3



Other Ramsey-like principles

CAC = For every partial order (N, <) there exists an infinite
set S C N which is a <-chain or =<-antichain.

ADS = For every linear order (N, <) there exists an infinite
set S C N which is an <-ascending or =<-descending
sequence.

CRT3 = for every c: [N]? — 2 there exists an infinite S C N
such that c[S is stable, i.e. for every x € S there
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Over RCA( one easily proves:
RT3 = CAC = ADS and RT3 = CRT3
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Other Ramsey-like principles

Each of CAC, ADS, CRT% is equivalent over RCAj
to a pSO sentence. Therefore:

» CAC,ADS and CRT3 are MJ-conservative over RCA}.
» CAC, ADS are not INy4- and CRT% is not [Ns-conservative over
RCA;.

> Each of CAC, ADS and CRT3 holds in some model of RCA;
of the form (M, A1-Def(M)). That is, in the absence of IX9
they may all be computably true.
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» RCA F RT3 = COH (Mileti 2004).

> RCAg - RT3 = CAC = ADS = COH = CRT}

» COH is Mi-conservative over RCAq (Cholak, Jockusch, Slaman 2001).

» For any n > 2, COH is M}-conservative over both RCAq + 1X9 and
RCAq + BXY (Belanger 2022).

The implication COH = CRT% is easily provable in RCAg,
and CRT3 is not Ms-conservative over RCA}. Thus:

Theorem
COH is not arithmetically conservative over RCAg.
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The curious case of COH

¥ 9-separation: For every two disjoint ¥3-definable sets Ay, Al
there exists a AJ-definable set B such that Ay C B and A; C B.

» RCAgF COH = Zg—separation (over RCAq proved by Belanger)
» On the other hand, BX; + exp - =X >-separation

» Thus, in every model of the form (M, A;-Def(M))
—¥9-separation fails.

» But there are such models satisfying RT% (and even RTE).

Theorem
RCAj ¥ RT3 = COH.

Theorem (Mengzhou Sun, 2025)
RCA§ + COH implies 139.
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Quantitative strengthening of conservation results

RT3 is VMJ-conservative over both RCAq and RCA}, but the
proofs are quite different. Can anything more be said about this?

Theorem (Kotodziejczyk, Wong, Yokyama)

RCAq + RT% is polynomially simulated by RCAq with respect to
VMY sentences.

Theorem (Kotodziejczyk, Wong, Yokyama)

RCAg + RT% has non-elementary speedup over RCA; with respect
to X1 sentences.

l.e., for every elementary computable function f there exists a X1 sentence o
and its proof § in RCA; + RT3 such that every proof of o in RCA] has size
greater than (|d]).
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Quantitative strengthening of conservation results

The proof of speedup for RCAj + RT% relies on the exponential

lower bound on Ramsey numbers for finite version of RT3:
There exists a 2-colouring of a set of size [25]2

without a homogeneous subset containing k elements.

However, by Dilworth’s theorem, the finite version of CAC has only
polynomial upper bound:

In every partial order on a set of size k(k — 1)
there exists a chain or an antichain of size k.

Theorem
RCAg + CAC, and hence RCAg + ADS, is polynomially simulated
by RCAg with respect to Vﬂg sentences.
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Questions

> Does RT3 imply RT3 over RCA}?

» Does ADS or CAC imply CRT3 over RCA}?
> Does RCA} 4 RT3 imply IX; = BX,?

» |s there a nice axiomatization of R??

> Is RCA} + CRT3 polynomially simulated by RCA} with
respect to VI'I% sentences?
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