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Ramsey’s Theorem over RCA0

RTn
k = For every c : [N]n → k there exists an infinite

set H ⊆ N such that c is constant on [H]n.

RTn
<∞ = ∀k RTn

k

RT = ∀nRTn
<∞

(Note: infinite = unbounded.)

RTn
1 is trivial and RT1

k is provable without any induction axioms.
For all n, k ≥ 2, RCA0 proves RTn

2 ⇒ RTn
k .

Theorem (Simpson; Jockusch)

For n ≥ 3 and k ≥ 2 we have RCA0 ⊢ RTn
k ⇔ RTn

<∞ ⇔ ACA0.

Theorem (McAloon; Friedman, Simpson)

RCA0 ⊢ RT ⇔ ACA′
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From Jeff Hirst’s thesis

▶ RCA0 ⊢ RT1
<∞ ⇔ BΣ0

2

▶ RCA0 ⊢ RT2
<∞ ⇒ BΣ0

3

▶ RCA0 ⊢ RT2
2 ⇒ BΣ0

2

▶ Therefore, WKL0 does not imply any of RT1
<∞, RT2

<∞, RT2
2.

▶ Moreover, there is an ω-model of WKL0 + ¬RT2
2.

In 2018, Slaman and Yokoyama proved that RCA0 + RT2
<∞

is Π1
1-conservative over BΣ0

3.
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The big open problem

▶ RCA0 + RT2
2 ⊬ ACA0

(Seetapun and Slaman, 1995)

▶ The first-order consequences of RCA0 + RT2
2 follow from IΣ2

(Cholak, Jockusch, Slaman, 2001)

▶ RCA0 + RT2
2 ⊬ WKL0

(Liu, 2012)

▶ RCA0 + RT2
2 is Π1

1-conservative over RCA0 + BΣ0
2 iff it is

∀Π0
5-conservative over RCA0 + BΣ0

2

(Fiori Carones, Ko lodziejczyk, Wong, Yokoyama, 2024)

▶ RCA0 + RT2
2 is ∀Π0

4-conservative over RCA0 + BΣ0
2

(Le Houérou, Patey, Yokoyama, 2024).
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A weaker base theory

RCA∗
0 is obtained from RCA0 by replacing IΣ0

1 with I∆0
1

and the axiom exp: = ‘2x is a total function’.

It was introduced by Simpson and Smith in 1986.

▶ The first-order part of RCA∗
0 is axiomatized by BΣ1 + exp.

▶ The provably recursive functions of RCA∗
0 are precisely the

elementary recursive ones.

▶ Over RCA∗
0, RCA0 is equivalent to the statement ,For every

unbounded set A there is a bijection f : N → A’.

Why RCA∗
0?

▶ It might be relevant for some results for RCA0.

▶ To calibrate logical strength of theorems provable in RCA0.

▶ To track uses of IΣ0
1 in mathematical proofs.

▶ To strengthen some reversals known to hold over RCA0.
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Failure of Σ0
1-induction

I is a Σ0
1-definable proper cut.

(cut = an initial interval closed

under successor function)

A is a ∆0
1-definable unbounded

set enumerated in increasing
order (only) by the cut I .

We will consider the structure
(I ,Cod(M/I )), where
Cod(M/I ) is the family of
coded subsets of I :

X ∈ Cod(M/I ) iff ∃s∈M s.t.
s is (a code for) a finite set
and s ∩ I = X .

SSy(M) := Cod(M/ω)
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For all n, k ≥ 2, RCA∗
0 proves RTn

k ⇒ RTn
k+1.

Thus, from now on, we consider only RTn
2 for n ≥ 2.



Equivalence with relativization to a Σ0
1-definable cut

Theorem
Let (M,X ) ⊨ RCA∗

0 and I is a proper Σ0
1-definable cut in M. Then

(M,X ) ⊨ RTn
2 iff (I ,Cod(M/I )) ⊨ RTn

2.

Corollary

Let (M,X ) ⊨ RCA∗
0 + ¬IΣ1. Then

(M,X ) ⊨ RTn
2 iff (M,∆1-Def(M)) ⊨ RTn

2.

Chong-Mourad coding lemma
Let (M,X ) ⊨ RCA∗

0 and I be a cut in M. If both Y ⊆ I and I \Y are
Σ0

1-definable in M, then Y ∈ Cod(M/I ).



Equivalence with relativization to a Σ0
1-definable cut

Theorem
Let (M,X ) ⊨ RCA∗

0 and I is a proper Σ0
1-definable cut in M. Then

(M,X ) ⊨ RTn
2 iff (I ,Cod(M/I )) ⊨ RTn

2.

Corollary

Let (M,X ) ⊨ RCA∗
0 + ¬IΣ1. Then

(M,X ) ⊨ RTn
2 iff (M,∆1-Def(M)) ⊨ RTn

2.

Chong-Mourad coding lemma
Let (M,X ) ⊨ RCA∗

0 and I be a cut in M. If both Y ⊆ I and I \Y are
Σ0

1-definable in M, then Y ∈ Cod(M/I ).



Equivalence with relativization to a Σ0
1-definable cut

Theorem
Let (M,X ) ⊨ RCA∗

0 and I is a proper Σ0
1-definable cut in M. Then

(M,X ) ⊨ RTn
2 iff (I ,Cod(M/I )) ⊨ RTn

2.

Corollary

Let (M,X ) ⊨ RCA∗
0 + ¬IΣ1. Then

(M,X ) ⊨ RTn
2 iff (M,∆1-Def(M)) ⊨ RTn

2.

Chong-Mourad coding lemma
Let (M,X ) ⊨ RCA∗

0 and I be a cut in M. If both Y ⊆ I and I \Y are
Σ0

1-definable in M, then Y ∈ Cod(M/I ).



Equivalence with relativization to a Σ0
1-definable cut

Theorem
Let (M,X ) ⊨ RCA∗

0 and I is a proper Σ0
1-definable cut in M. Then

(M,X ) ⊨ RTn
2 iff (I ,Cod(M/I )) ⊨ RTn

2.

Corollary

Let (M,X ) ⊨ RCA∗
0 + ¬IΣ1. Then

(M,X ) ⊨ RTn
2 iff (M,∆1-Def(M)) ⊨ RTn

2.

Chong-Mourad coding lemma
Let (M,X ) ⊨ RCA∗

0 and I be a cut in M. If both Y ⊆ I and I \Y are
Σ0

1-definable in M, then Y ∈ Cod(M/I ).



Conservativity

Theorem
RCA∗

0 + RTn
2 is ∀Π0

3-conservative over RCA∗
0.

Theorem
RCA∗

0 + RTn
2 is not Π4-conservative over RCA∗

0.

RCA∗
0 + RTn

2 proves the following Π4 sentence:
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where ∆ℓ-RTn
2 says: For every ∆ℓ-definable 2-colouring of [N]n there is

a ∆ℓ-definable infinite homogeneous set.
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Provability of computational bounds on RTn
2

Every ∆ℓ-RTn
2 is false in the standard model but how much

of induction is needed to disprove it?

Lemma
Let ℓ ≥ 1. Then:

1. IΣℓ ⊢ ¬∆ℓ-RTn
2,

2. the theory BΣℓ + exp + ∆ℓ-RTn
2 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).
For (2), consider a model M ⊨ BΣℓ + ¬IΣℓ with Σℓ-definble ω and
SSy(M) ⊨ RTn

2. Apply the ‘cut equivalence theorem’ to the
structure (M,∆ℓ-Def(M)).



Provability of computational bounds on RTn
2

Every ∆ℓ-RTn
2 is false in the standard model but how much

of induction is needed to disprove it?

Lemma
Let ℓ ≥ 1. Then:

1. IΣℓ ⊢ ¬∆ℓ-RTn
2,

2. the theory BΣℓ + exp + ∆ℓ-RTn
2 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).
For (2), consider a model M ⊨ BΣℓ + ¬IΣℓ with Σℓ-definble ω and
SSy(M) ⊨ RTn

2. Apply the ‘cut equivalence theorem’ to the
structure (M,∆ℓ-Def(M)).



Provability of computational bounds on RTn
2

Every ∆ℓ-RTn
2 is false in the standard model but how much

of induction is needed to disprove it?

Lemma
Let ℓ ≥ 1. Then:

1. IΣℓ ⊢ ¬∆ℓ-RTn
2,

2. the theory BΣℓ + exp + ∆ℓ-RTn
2 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).
For (2), consider a model M ⊨ BΣℓ + ¬IΣℓ with Σℓ-definble ω and
SSy(M) ⊨ RTn

2. Apply the ‘cut equivalence theorem’ to the
structure (M,∆ℓ-Def(M)).



Provability of computational bounds on RTn
2

Every ∆ℓ-RTn
2 is false in the standard model but how much

of induction is needed to disprove it?

Lemma
Let ℓ ≥ 1. Then:

1. IΣℓ ⊢ ¬∆ℓ-RTn
2,

2. the theory BΣℓ + exp + ∆ℓ-RTn
2 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).

For (2), consider a model M ⊨ BΣℓ + ¬IΣℓ with Σℓ-definble ω and
SSy(M) ⊨ RTn

2. Apply the ‘cut equivalence theorem’ to the
structure (M,∆ℓ-Def(M)).



Provability of computational bounds on RTn
2

Every ∆ℓ-RTn
2 is false in the standard model but how much

of induction is needed to disprove it?

Lemma
Let ℓ ≥ 1. Then:

1. IΣℓ ⊢ ¬∆ℓ-RTn
2,

2. the theory BΣℓ + exp + ∆ℓ-RTn
2 is consistent.

To prove (1), formalize the argument of (Jockusch 1972).
For (2), consider a model M ⊨ BΣℓ + ¬IΣℓ with Σℓ-definble ω and
SSy(M) ⊨ RTn

2. Apply the ‘cut equivalence theorem’ to the
structure (M,∆ℓ-Def(M)).



Provability of computational bounds on RTn
2

Lemma
Let n ≥ 3 and (M,X ) |= RCA∗

0 + RTn
2. If M |= IΣℓ then 0(ℓ) ∈ X .

As a consequence, ∆ℓ+1-Def(M) ⊆ X and M |= BΣℓ+1.

For ℓ = 1 take Jockusch’s computable colouring of triples whose
solutions compute 0′: for x < y < z let c(x , y , z) = 0 if there is
a Turing machine with a code below x that halts below z but not
below y . By RT3

2, there is a homogeneous set H, and by IΣ1 it
must have colour 1. To check whether e ∈ 0′ take any x , y ∈ H
such that e < x < y and execute the computation Φe on e until
the y -th step.
For the other cases proceed by induction up to ℓ and relativize the
case ℓ = 1.
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First-order consequences: n ≥ 3

Let Rn denote the first-order consequences of RTn
2 over RCA∗

0.

Theorem
Let n ≥ 3. The theory Rn is axiomatized by BΣ1 + exp and the set:

{BΣℓ ⇒ (BΣℓ+1 ∨ ∆ℓ-RTn
2) : ℓ ≥ 1} .

▶ Rn is strictly in between IB + exp and PA,
where IB : = BΣ1 + {IΣℓ ⇒ BΣℓ+1 : ℓ ≥ 1}.

▶ Thus, Rn is not finitely axiomatizable.

▶ The Π3-part of Rn is BΣ1 + exp.

▶ For ℓ ≥ 1, its Πℓ+3-part lies strictly in between
BΣ1 + exp +

∧
1≤j≤ℓ (IΣj ⇒ BΣj+1) and BΣℓ+1.
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First-order consequences: n = 2

What do we know about R2?

▶ R2 follows from IΣ2 (By Cholak, Jockusch, Slaman).

▶ Over ¬IΣ1, R2 is equivalent to ∆1-RT2
2.

▶ The Π3-part of R2 is BΣ1 + exp.

▶ The Π4-part of R2 is strictly weaker then BΣ2 but does not
follow from IΣ1:

▶ RCA∗
0 + RT2

2 ⊢ CΣ2 but IΣ1 ⊬ CΣ2,

where CΣ2 is a Π4-sentence saying ‘there is no Σ2-definable injection
f : N → N with a bounded range’.
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More general results

An L2 sentence σ is called pSO if there exists a sentence γ of
second-order logic in a relational language (≤,R1, . . . ,Rk) such
that σ expresses:

For every relations R1, . . . ,Rk on N and every infinite set
D ⊆ N, there exists an infinite set H ⊆ D such that
(H,≤,R1, . . . ,Rk) ⊨ γ.

The ‘cut equivalence theorem’ holds for any pSO sentence σ:

(M,X ) ⊨ σ iff (I ,Cod(M/I )) ⊨ σ,

where (M,X ) ⊨ RCA∗
0 and I is a Σ0

1-definable proper cut.
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Theorem
Let σ be a pSO sentence. Then the following are equivalent:

(i) RCA∗
0 + σ is Π1

1-conservative over RCA∗
0,

(ii) RCA∗
0 + ¬IΣ0

1 ⊢ σ,

(iii) WKL∗
0 ⊢ σ.

Moreover, if WKL0 ̸⊢ σ, then RCA∗
0 + σ is not arithmetically

conservative over RCA∗
0.

Theorem
Let σ be a pSO sentence such that there exists an ω-model of the
theory WKL0 +σ. Then WKL∗

0 +σ is ∀Π0
3-conservative over RCA∗

0.



More general results

Theorem
Let σ be a pSO sentence. Then the following are equivalent:

(i) RCA∗
0 + σ is Π1

1-conservative over RCA∗
0,

(ii) RCA∗
0 + ¬IΣ0

1 ⊢ σ,

(iii) WKL∗
0 ⊢ σ.

Moreover, if WKL0 ̸⊢ σ, then RCA∗
0 + σ is not arithmetically

conservative over RCA∗
0.

Theorem
Let σ be a pSO sentence such that there exists an ω-model of the
theory WKL0 +σ. Then WKL∗

0 +σ is ∀Π0
3-conservative over RCA∗

0.



Other Ramsey-like principles

CAC = For every partial order (N,⪯) there exists an infinite
set S ⊆ N which is a ⪯-chain or ⪯-antichain.

ADS = For every linear order (N,⪯) there exists an infinite
set S ⊆ N which is an ⪯-ascending or ⪯-descending
sequence.

CRT2
2 = for every c : [N]2 → 2 there exists an infinite S ⊆ N

such that c ↾S is stable, i.e. for every x ∈ S there
exists y ∈ S such that for all z ∈ S if z ≥ y , then
c(x , y) = c(x , z).

Over RCA0 we have: RT2
2 ⇒ CAC ⇒ ADS ⇒ CRT2

2

Over RCA∗
0 one easily proves:

RT2
2 ⇒ CAC ⇒ ADS and RT2

2 ⇒ CRT2
2
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Other Ramsey-like principles

Each of CAC, ADS, CRT2
2 is equivalent over RCA∗

0

to a pSO sentence. Therefore:

▶ CAC,ADS and CRT2
2 are Π0

3-conservative over RCA∗
0.

▶ CAC,ADS are not Π4- and CRT2
2 is not Π5-conservative over

RCA∗
0.

▶ Each of CAC,ADS and CRT2
2 holds in some model of RCA∗

0

of the form (M,∆1-Def(M)). That is, in the absence of IΣ0
1

they may all be computably true.
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The curious case of COH

COH: For each sequence (Rn)n∈N of subsets of N, there exists an
unbounded set C which is cohesive for (Rn)n∈N (i.e. for every i ∈ N
either C ⊆∗ Ri or C ⊆∗ R i ).

▶ The decomposition RT2
2 ⇔ SRT2

2 + COH was used in (CJS 2001)
to prove Π1

1-conservativity of RT2
2 over RCA0 + IΣ0

2.

▶ RCA0 ⊢ RT2
2 ⇒ COH (Mileti 2004).

▶ RCA0 ⊢ RT2
2 ⇒ CAC ⇒ ADS ⇒ COH ⇒ CRT2

2

▶ COH is Π1
1-conservative over RCA0 (Cholak, Jockusch, Slaman 2001).

▶ For any n ≥ 2, COH is Π1
1-conservative over both RCA0 + IΣ0

n and
RCA0 + BΣ0

n (Belanger 2022).

The implication COH ⇒ CRT2
2 is easily provable in RCA∗

0,
and CRT2

2 is not Π5-conservative over RCA∗
0. Thus:

Theorem
COH is not arithmetically conservative over RCA∗

0.
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Σ0
2-separation: For every two disjoint Σ0
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▶ RCA∗
0 ⊢ COH ⇒ Σ0

2-separation (over RCA0 proved by Belanger)

▶ On the other hand, BΣ1 + exp ⊢ ¬Σ2-separation

▶ Thus, in every model of the form (M,∆1-Def(M))
¬Σ0

2-separation fails.

▶ But there are such models satisfying RT2
2 (and even RT81

47).

Theorem
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RT2
2 is ∀Π0

3-conservative over both RCA0 and RCA∗
0, but the

proofs are quite different. Can anything more be said about this?

Theorem (Ko lodziejczyk, Wong, Yokyama)
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2 is polynomially simulated by RCA0 with respect to

∀Π0
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Theorem (Ko lodziejczyk, Wong, Yokyama)
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I.e., for every elementary computable function f there exists a Σ1 sentence σ
and its proof δ in RCA∗

0 + RT2
2 such that every proof of σ in RCA∗

0 has size
greater than f (|δ|).
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The proof of speedup for RCA∗
0 + RT2

2 relies on the exponential
lower bound on Ramsey numbers for finite version of RT2

2:

There exists a 2-colouring of a set of size [2
k
2 ]2

without a homogeneous subset containing k elements.

However, by Dilworth’s theorem, the finite version of CAC has only
polynomial upper bound:

In every partial order on a set of size k(k − 1)
there exists a chain or an antichain of size k.
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