The strength of Ramsey's theorem over a weaker base theory

Katarzyna W. Kowalik (joint work with M. Fiori Carones, L. Kołodziejczyk and K. Yokoyama)

Hirstfest Vienna, 9 August 2025

 $\mathsf{RT}_k^n = \mathsf{For} \ \mathsf{every} \ c \colon [\mathbb{N}]^n \to k \ \mathsf{there} \ \mathsf{exists} \ \mathsf{an} \ \mathsf{infinite} \ \mathsf{set} \ H \subseteq \mathbb{N} \ \mathsf{such} \ \mathsf{that} \ c \ \mathsf{is} \ \mathsf{constant} \ \mathsf{on} \ [H]^n.$

```
\mathsf{RT}^n_k = \mathsf{For} \ \mathsf{every} \ c \colon [\mathbb{N}]^n \to k \ \mathsf{there} \ \mathsf{exists} \ \mathsf{an} \ \mathsf{infinite} \ \mathsf{set} \ H \subseteq \mathbb{N} \ \mathsf{such} \ \mathsf{that} \ c \ \mathsf{is} \ \mathsf{constant} \ \mathsf{on} \ [H]^n. \mathsf{RT}^n_{<\infty} = \ \forall k \ \mathsf{RT}^n_k
```

```
\begin{aligned} \mathsf{RT}^n_k &= & \mathsf{For} \; \mathsf{every} \; c \colon [\mathbb{N}]^n \to k \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \\ & \mathsf{set} \; H \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \; \mathsf{is} \; \mathsf{constant} \; \mathsf{on} \; [H]^n. \\ \mathsf{RT}^n_{<\infty} &= & \forall k \, \mathsf{RT}^n_k \\ \mathsf{RT} &= & \forall n \, \mathsf{RT}^n_{<\infty} \end{aligned}
```

```
\begin{array}{ll} \mathsf{RT}^n_k = & \mathsf{For} \ \mathsf{every} \ c \colon [\mathbb{N}]^n \to k \ \mathsf{there} \ \mathsf{exists} \ \mathsf{an} \ \mathsf{infinite} \\ & \mathsf{set} \ H \subseteq \mathbb{N} \ \mathsf{such} \ \mathsf{that} \ c \ \mathsf{is} \ \mathsf{constant} \ \mathsf{on} \ [H]^n. \\ \\ \mathsf{RT}^n_{<\infty} = & \forall k \ \mathsf{RT}^n_k \\ & \mathsf{RT} = & \forall n \ \mathsf{RT}^n_{<\infty} \end{array} (Note: infinite = unbounded.)
```

```
\begin{array}{ll} \mathsf{RT}^n_k = & \mathsf{For} \; \mathsf{every} \; c \colon [\mathbb{N}]^n \to k \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \\ & \mathsf{set} \; H \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \; \mathsf{is} \; \mathsf{constant} \; \mathsf{on} \; [H]^n. \\ \\ \mathsf{RT}^n_{<\infty} = & \forall k \; \mathsf{RT}^n_k \\ \\ \mathsf{RT} = & \forall n \; \mathsf{RT}^n_{<\infty} \end{array} \tag{Note: infinite} = \mathsf{unbounded.})
```

 RT_1^n is trivial and RT_k^1 is provable without any induction axioms. For all $n,k\geq 2$, RCA_0 proves $\mathsf{RT}_2^n\Rightarrow \mathsf{RT}_k^n$.

```
\mathsf{RT}^n_k = \mathsf{For} \; \mathsf{every} \; c \colon [\mathbb{N}]^n \to k \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \; \mathsf{set} \; H \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \; \mathsf{is} \; \mathsf{constant} \; \mathsf{on} \; [H]^n.  \mathsf{RT}^n_{<\infty} = \; \forall k \; \mathsf{RT}^n_k \; \mathsf{RT} = \; \forall n \; \mathsf{RT}^n_{<\infty} \; \mathsf{Note:} \; \mathsf{infinite} = \mathsf{unbounded.})
```

 RT_1^n is trivial and RT_k^1 is provable without any induction axioms. For all $n, k \geq 2$, RCA_0 proves $\mathsf{RT}_2^n \Rightarrow \mathsf{RT}_k^n$.

Theorem (Simpson; Jockusch)

For $n \geq 3$ and $k \geq 2$ we have $RCA_0 \vdash RT_k^n \Leftrightarrow RT_{<\infty}^n \Leftrightarrow ACA_0$.

```
\begin{array}{ll} \mathsf{RT}^n_k = & \mathsf{For} \; \mathsf{every} \; c \colon [\mathbb{N}]^n \to k \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \\ & \mathsf{set} \; H \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \; \mathsf{is} \; \mathsf{constant} \; \mathsf{on} \; [H]^n. \\ \\ \mathsf{RT}^n_{<\infty} = & \forall k \; \mathsf{RT}^n_k \\ \\ \mathsf{RT} = & \forall n \; \mathsf{RT}^n_{<\infty} \end{array} \tag{Note: infinite} = \mathsf{unbounded.})
```

 RT_1^n is trivial and RT_k^1 is provable without any induction axioms. For all $n,k\geq 2$, RCA_0 proves $\mathsf{RT}_2^n\Rightarrow \mathsf{RT}_k^n$.

Theorem (Simpson; Jockusch)

For $n \geq 3$ and $k \geq 2$ we have $RCA_0 \vdash RT_k^n \Leftrightarrow RT_{<\infty}^n \Leftrightarrow ACA_0$.

Theorem (McAloon; Friedman, Simpson) $RCA_0 \vdash RT \Leftrightarrow ACA'_0$.

 $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$

- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^2_{<\infty} \Rightarrow \mathsf{B}\Sigma^0_3$

- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^2_{<\infty} \Rightarrow \mathsf{B}\Sigma^0_3$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{B}\Sigma_2^0$

- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^2_{<\infty} \Rightarrow \mathsf{B}\Sigma^0_3$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{B}\Sigma_2^0$
- ▶ Therefore, WKL₀ does not imply any of $RT^1_{<\infty}$, $RT^2_{<\infty}$, RT^2_{2} .

- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^2_{<\infty} \Rightarrow \mathsf{B}\Sigma^0_3$
- ► $RCA_0 \vdash RT_2^2 \Rightarrow B\Sigma_2^0$
- ▶ Therefore, WKL₀ does not imply any of $RT^1_{<\infty}$, $RT^2_{<\infty}$, RT^2_{2} .
- ▶ Moreover, there is an ω -model of WKL₀ + ¬RT₂².

- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1_{<\infty} \Leftrightarrow \mathsf{B}\Sigma^0_2$
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}^2_{<\infty} \Rightarrow \mathsf{B}\Sigma^0_3$
- ► $RCA_0 \vdash RT_2^2 \Rightarrow B\Sigma_2^0$
- ▶ Therefore, WKL₀ does not imply any of $RT^1_{<\infty}$, $RT^2_{<\infty}$, RT^2_{2} .
- ▶ Moreover, there is an ω -model of WKL₀ + ¬RT₂².

In 2018, Slaman and Yokoyama proved that RCA $_0+RT_{<\infty}^2$ is Π^1_1 -conservative over B Σ^0_3 .

► $RCA_0 + RT_2^2 \not\vdash ACA_0$ (Seetapun and Slaman, 1995)

- ► $RCA_0 + RT_2^2 \nvdash ACA_0$ (Seetapun and Slaman, 1995)
- The first-order consequences of RCA $_0$ + RT $_2^2$ follow from IΣ $_2$ (Cholak, Jockusch, Slaman, 2001)

- ► $RCA_0 + RT_2^2 \nvdash ACA_0$ (Seetapun and Slaman, 1995)
- The first-order consequences of RCA $_0$ + RT $_2^2$ follow from IΣ $_2$ (Cholak, Jockusch, Slaman, 2001)
- $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \nvdash \mathsf{WKL}_0$ (Liu, 2012)

- ► $RCA_0 + RT_2^2 \nvdash ACA_0$ (Seetapun and Slaman, 1995)
- ▶ The first-order consequences of RCA $_0$ + RT $_2^2$ follow from I Σ_2 (Cholak, Jockusch, Slaman, 2001)
- $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \nvdash \mathsf{WKL}_0$ (Liu, 2012)
- ▶ RCA₀ + RT₂² is Π_1^1 -conservative over RCA₀ + B Σ_2^0 iff it is $\forall \Pi_5^0$ -conservative over RCA₀ + B Σ_2^0 (Fiori Carones, Kołodziejczyk, Wong, Yokoyama, 2024)

- ► $RCA_0 + RT_2^2 \not\vdash ACA_0$ (Seetapun and Slaman, 1995)
- ▶ The first-order consequences of RCA $_0$ + RT $_2^2$ follow from I Σ_2 (Cholak, Jockusch, Slaman, 2001)
- $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \nvdash \mathsf{WKL}_0$ (Liu, 2012)
- ▶ RCA₀ + RT₂² is Π_1^1 -conservative over RCA₀ + B Σ_2^0 iff it is $\forall \Pi_5^0$ -conservative over RCA₀ + B Σ_2^0 (Fiori Carones, Kołodziejczyk, Wong, Yokoyama, 2024)
- ► RCA₀ + RT₂² is $\forall \Pi_4^0$ -conservative over RCA₀ + B Σ_2^0 (Le Houérou, Patey, Yokoyama, 2024).

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= {}^{\mathrm{t}}2^{\mathrm{x}}$ is a total function'.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.

 $\mathbf{RCA_0^*}$ is obtained from $\mathsf{RCA_0}$ by replacing $\mathsf{I}\Sigma_1^0$ with $\mathsf{I}\Delta_1^0$ and the axiom $\mathsf{exp}:=\text{`}2^\mathsf{x}$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

Why RCA₀*?

▶ It might be relevant for some results for RCA₀.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^x$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

- ▶ It might be relevant for some results for RCA₀.
- ► To calibrate logical strength of theorems provable in RCA₀.

 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:=\text{`}2^{\times}$ is a total function'. It was introduced by Simpson and Smith in 1986.

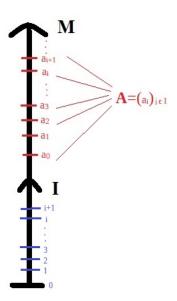
- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

- It might be relevant for some results for RCA₀.
- ightharpoonup To calibrate logical strength of theorems provable in RCA₀.
- ▶ To track uses of $I\Sigma_1^0$ in mathematical proofs.

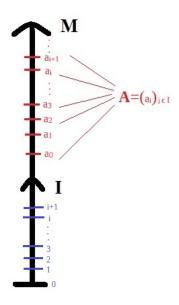
 $\mathbf{RCA_0^*}$ is obtained from RCA₀ by replacing $\mathbf{I}\Sigma_1^0$ with $\mathbf{I}\Delta_1^0$ and the axiom $\exp:= `2^{\times}$ is a total function'. It was introduced by Simpson and Smith in 1986.

- ▶ The first-order part of RCA $_0^*$ is axiomatized by B Σ_1 + exp.
- ► The provably recursive functions of RCA₀* are precisely the elementary recursive ones.
- ▶ Over RCA₀*, RCA₀ is equivalent to the statement ,For every unbounded set A there is a bijection $f: \mathbb{N} \to A'$.

- It might be relevant for some results for RCA₀.
- ightharpoonup To calibrate logical strength of theorems provable in RCA₀.
- ▶ To track uses of $I\Sigma_1^0$ in mathematical proofs.
- To strengthen some reversals known to hold over RCA₀.

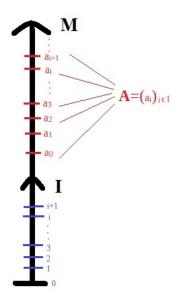


I is a Σ_1^0 -definable proper cut. (cut = an initial interval closed under successor function)



I is a Σ_1^0 -definable proper cut. (cut = an initial interval closed under successor function)

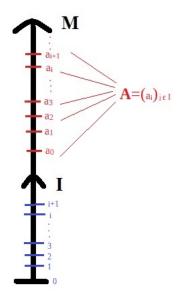
A is a Δ_1^0 -definable unbounded set enumerated in increasing order (only) by the cut I.



I is a Σ_1^0 -definable proper cut. (cut = an initial interval closed under successor function)

A is a Δ_1^0 -definable unbounded set enumerated in increasing order (only) by the cut I.

We will consider the structure $(I, \operatorname{Cod}(M/I))$, where $\operatorname{Cod}(M/I)$ is the family of coded subsets of I:



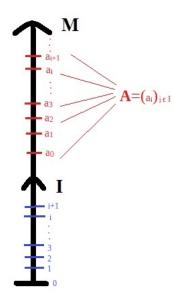
I is a Σ_1^0 -definable proper cut. (cut = an initial interval closed under successor function)

A is a Δ_1^0 -definable unbounded set enumerated in increasing order (only) by the cut I.

We will consider the structure $(I, \operatorname{Cod}(M/I))$, where $\operatorname{Cod}(M/I)$ is the family of coded subsets of I:

 $X \in \operatorname{Cod}(M/I)$ iff $\exists s \in M$ s.t. s is (a code for) a finite set and $s \cap I = X$.

Failure of Σ_1^0 -induction



I is a Σ_1^0 -definable proper cut. (cut = an initial interval closed under successor function)

A is a Δ_1^0 -definable unbounded set enumerated in increasing order (only) by the cut I.

We will consider the structure $(I, \operatorname{Cod}(M/I))$, where $\operatorname{Cod}(M/I)$ is the family of coded subsets of I:

 $X \in \operatorname{Cod}(M/I)$ iff $\exists s \in M$ s.t. s is (a code for) a finite set and $s \cap I = X$.

 $SSy(M) := Cod(M/\omega)$

For all $n, k \geq 2$, RCA₀* proves RT_k* \Rightarrow RT_{k+1}*.

Thus, from now on, we consider only RT_2^n for $n \ge 2$.

Equivalence with relativization to a Σ^0_1 -definable cut

Equivalence with relativization to a Σ_1^0 -definable cut

Theorem

Let
$$(M, \mathcal{X}) \vDash \mathsf{RCA}_0^*$$
 and I is a proper Σ_1^0 -definable cut in M . Then
$$(M, \mathcal{X}) \vDash \mathsf{RT}_2^n \quad \textit{iff} \quad (I, \mathrm{Cod}(M/I)) \vDash \mathsf{RT}_2^n.$$

Equivalence with relativization to a Σ_1^0 -definable cut

Theorem

Let
$$(M, \mathcal{X}) \models \mathsf{RCA}_0^*$$
 and I is a proper Σ_1^0 -definable cut in M . Then
$$(M, \mathcal{X}) \models \mathsf{RT}_2^n \quad \textit{iff} \quad (I, \mathrm{Cod}(M/I)) \models \mathsf{RT}_2^n.$$

Corollary

Let
$$(M, \mathcal{X}) \vDash \mathsf{RCA}_0^* + \neg \mathsf{I}\Sigma_1$$
. Then
$$(M, \mathcal{X}) \vDash \mathsf{RT}_2^n \quad \textit{iff} \quad (M, \Delta_1\text{-Def}(M)) \vDash \mathsf{RT}_2^n.$$

Equivalence with relativization to a Σ_1^0 -definable cut

Theorem

Let
$$(M, \mathcal{X}) \vDash \mathsf{RCA}_0^*$$
 and I is a proper Σ_1^0 -definable cut in M . Then
$$(M, \mathcal{X}) \vDash \mathsf{RT}_2^n \quad \textit{iff} \quad (I, \mathrm{Cod}(M/I)) \vDash \mathsf{RT}_2^n.$$

Corollary

Let
$$(M, \mathcal{X}) \vDash \mathsf{RCA}_0^* + \neg \mathsf{I}\Sigma_1$$
. Then
$$(M, \mathcal{X}) \vDash \mathsf{RT}_2^n \quad \textit{iff} \quad (M, \Delta_1\text{-Def}(M)) \vDash \mathsf{RT}_2^n.$$

Chong-Mourad coding lemma

Let $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ and I be a cut in M. If both $Y \subseteq I$ and $I \setminus Y$ are Σ_1^0 -definable in M, then $Y \in \mathrm{Cod}(M/I)$.

Theorem

 $\mathsf{RCA}_0^* + \mathsf{RT}_2^n$ is $\forall \Pi_3^0$ -conservative over RCA_0^* .

Theorem

 $RCA_0^* + RT_2^n$ is $\forall \Pi_3^0$ -conservative over RCA_0^* .

Theorem

 $RCA_0^* + RT_2^n$ is not Π_4 -conservative over RCA_0^* .

Theorem

 $RCA_0^* + RT_2^n$ is $\forall \Pi_3^0$ -conservative over RCA_0^* .

Theorem

 $RCA_0^* + RT_2^n$ is not Π_4 -conservative over RCA_0^* .

 $\mathsf{RCA}_0^* + \mathsf{RT}_2^n$ proves the following Π_4 sentence:

$$\neg \mathsf{I}\Sigma_1 \Rightarrow \Delta_1 \text{-}\mathsf{RT}_2^n$$
,

where Δ_{ℓ} -RTⁿ₂ says: For every Δ_{ℓ} -definable 2-colouring of $[\mathbb{N}]^n$ there is a Δ_{ℓ} -definable infinite homogeneous set.

Every Δ_{ℓ} -RT₂ⁿ is false in the standard model but how much of induction is needed to disprove it?

Every Δ_{ℓ} -RT₂ⁿ is false in the standard model but how much of induction is needed to disprove it?

Lemma

Let $\ell \geq 1$. Then:

1.
$$\mathsf{I}\Sigma_\ell \vdash \neg \Delta_\ell \mathsf{-RT}_2^n$$
,

Every Δ_{ℓ} -RT₂ⁿ is false in the standard model but how much of induction is needed to disprove it?

Lemma

Let $\ell > 1$. Then:

- 1. $I\Sigma_{\ell} \vdash \neg \Delta_{\ell} RT_2^n$,
- 2. the theory $B\Sigma_{\ell} + \exp + \Delta_{\ell}-RT_2^n$ is consistent.

To prove (1), formalize the argument of (Jockusch 1972).

Every Δ_{ℓ} -RT₂ⁿ is false in the standard model but how much of induction is needed to disprove it?

Lemma

Let $\ell > 1$. Then:

- 1. $I\Sigma_{\ell} \vdash \neg \Delta_{\ell} RT_2^n$,
- 2. the theory $B\Sigma_{\ell} + \exp + \Delta_{\ell}-RT_2^n$ is consistent.

To prove (1), formalize the argument of (Jockusch 1972). For (2), consider a model $M \models \mathsf{B}\Sigma_\ell + \neg \mathsf{I}\Sigma_\ell$ with Σ_ℓ -definble ω and $\mathsf{SSy}(M) \models \mathsf{RT}_2^n$. Apply the 'cut equivalence theorem' to the structure $(M, \Delta_\ell\text{-Def}(M))$.

Lemma

Let $n \geq 3$ and $(M, \mathcal{X}) \models \mathsf{RCA}_0^* + \mathsf{RT}_2^n$. If $M \models \mathsf{I}\Sigma_\ell$ then $0^{(\ell)} \in \mathcal{X}$. As a consequence, $\Delta_{\ell+1}\text{-Def}(M) \subseteq \mathcal{X}$ and $M \models \mathsf{B}\Sigma_{\ell+1}$.

Lemma

Let $n \geq 3$ and $(M, \mathcal{X}) \models \mathsf{RCA}_0^* + \mathsf{RT}_2^n$. If $M \models \mathsf{I}\Sigma_\ell$ then $\mathsf{0}^{(\ell)} \in \mathcal{X}$. As a consequence, $\Delta_{\ell+1}\text{-Def}(M) \subseteq \mathcal{X}$ and $M \models \mathsf{B}\Sigma_{\ell+1}$.

For $\ell=1$ take Jockusch's computable colouring of triples whose solutions compute 0': for x < y < z let c(x,y,z)=0 if there is a Turing machine with a code below x that halts below z but not below y. By RT $_2^3$, there is a homogeneous set H, and by I Σ_1 it must have colour 1. To check whether $e \in 0$ ' take any $x,y \in H$ such that e < x < y and execute the computation Φ_e on e until the y-th step.

For the other cases proceed by induction up to ℓ and relativize the case $\ell=1.$

Let \mathbb{R}^n denote the first-order consequences of $\mathbb{R}\mathsf{T}_2^n$ over $\mathbb{R}\mathsf{C}\mathsf{A}_0^*$.

Let \mathbb{R}^n denote the first-order consequences of \mathbb{RT}_2^n over \mathbb{RCA}_0^* .

Theorem

Let $n \ge 3$. The theory R^n is axiomatized by $B\Sigma_1 + \exp$ and the set:

$$\left\{\mathsf{B}\Sigma_\ell\Rightarrow\left(\mathsf{B}\Sigma_{\ell+1}\vee\Delta_\ell\text{-RT}_2^n\right)\colon\ \ell\geq 1\right\}.$$

Let \mathbb{R}^n denote the first-order consequences of $\mathbb{R}\mathsf{T}_2^n$ over $\mathbb{R}\mathsf{C}\mathsf{A}_0^*$.

Theorem

Let $n \ge 3$. The theory \mathbb{R}^n is axiomatized by $\mathsf{B}\Sigma_1 + \mathsf{exp}$ and the set:

$$\left\{\mathsf{B}\Sigma_\ell\Rightarrow\left(\mathsf{B}\Sigma_{\ell+1}\vee\Delta_\ell\text{-RT}_2^n\right)\colon\ \ell\geq 1\right\}.$$

▶ Rⁿ is strictly in between IB + exp and PA, where IB := B Σ_1 + {I $\Sigma_\ell \Rightarrow$ B $\Sigma_{\ell+1}$: $\ell \ge 1$ }.

Let \mathbb{R}^n denote the first-order consequences of $\mathbb{R}\mathsf{T}_2^n$ over $\mathbb{R}\mathsf{C}\mathsf{A}_0^*$.

Theorem

Let $n \ge 3$. The theory \mathbb{R}^n is axiomatized by $\mathsf{B}\Sigma_1 + \mathsf{exp}$ and the set:

$$\left\{\mathsf{B}\Sigma_\ell\Rightarrow\left(\mathsf{B}\Sigma_{\ell+1}\vee\Delta_\ell\text{-RT}_2^n\right)\colon\ \ell\geq 1\right\}.$$

- ▶ Rⁿ is strictly in between IB + exp and PA, where IB := BΣ₁ + {IΣ_ℓ ⇒ BΣ_{ℓ+1}: ℓ ≥ 1}.
- ► Thus, Rⁿ is not finitely axiomatizable.

Let \mathbb{R}^n denote the first-order consequences of $\mathbb{R}\mathsf{T}_2^n$ over $\mathbb{R}\mathsf{C}\mathsf{A}_0^*$.

Theorem

Let $n \ge 3$. The theory \mathbb{R}^n is axiomatized by $\mathsf{B}\Sigma_1 + \mathsf{exp}$ and the set:

$$\left\{\mathsf{B}\Sigma_{\ell}\Rightarrow\left(\mathsf{B}\Sigma_{\ell+1}\vee\Delta_{\ell}\text{-}\mathsf{R}\mathsf{T}_2^n\right)\colon\ \ell\geq 1\right\}.$$

- ▶ Rⁿ is strictly in between IB + exp and PA, where IB := BΣ₁ + {IΣ_ℓ ⇒ BΣ_{ℓ+1}: ℓ ≥ 1}.
- ► Thus, Rⁿ is not finitely axiomatizable.
- ► The Π_3 -part of \mathbb{R}^n is $\mathbb{B}\Sigma_1 + \exp$.

Let \mathbb{R}^n denote the first-order consequences of \mathbb{RT}_2^n over \mathbb{RCA}_0^* .

Theorem

Let $n \ge 3$. The theory R^n is axiomatized by $B\Sigma_1 + \exp$ and the set:

$$\left\{\mathsf{B}\Sigma_\ell\Rightarrow\left(\mathsf{B}\Sigma_{\ell+1}\vee\Delta_\ell\text{-RT}_2^n\right)\colon\ \ell\geq 1\right\}.$$

- ▶ R^n is strictly in between $IB + \exp$ and PA, where $IB := B\Sigma_1 + \{I\Sigma_\ell \Rightarrow B\Sigma_{\ell+1} \colon \ell \geq 1\}$.
- ► Thus, Rⁿ is not finitely axiomatizable.
- ► The Π_3 -part of \mathbb{R}^n is $\mathbb{B}\Sigma_1 + \exp$.
- For $\ell \geq 1$, its $\Pi_{\ell+3}$ -part lies strictly in between $\mathsf{B}\Sigma_1 + \mathsf{exp} + \bigwedge_{1 \leq j \leq \ell} (\mathsf{I}\Sigma_j \Rightarrow \mathsf{B}\Sigma_{j+1})$ and $\mathsf{B}\Sigma_{\ell+1}$.

What do we know about R^2 ?

What do we know about R^2 ?

- $ightharpoonup R^2$ follows from $I\Sigma_2$ (By Cholak, Jockusch, Slaman).
- ▶ Over $\neg I\Sigma_1$, R^2 is equivalent to Δ_1 - RT_2^2 .
- ► The Π_3 -part of R^2 is $B\Sigma_1$ + exp.

What do we know about R^2 ?

- ▶ R^2 follows from $I\Sigma_2$ (By Cholak, Jockusch, Slaman).
- ▶ Over $\neg I\Sigma_1$, R^2 is equivalent to Δ_1 - RT_2^2 .
- ► The Π₃-part of R² is BΣ₁ + exp.
- ► The Π_4 -part of R^2 is strictly weaker then $B\Sigma_2$ but does not follow from $I\Sigma_1$:
- $\begin{array}{l} \blacktriangleright \ \, \mathsf{RCA}_0^* + \mathsf{RT}_2^2 \vdash \mathsf{C}\Sigma_2 \ \, \mathsf{but} \ \, \mathsf{I}\Sigma_1 \not\vdash \mathsf{C}\Sigma_2, \\ \\ \mathsf{where} \ \, \mathsf{C}\Sigma_2 \ \, \mathsf{is} \ \, \mathsf{a} \ \, \mathsf{\Pi}_4\text{-sentence saying 'there is no } \Sigma_2\text{-definable injection} \\ f \colon \mathbb{N} \to \mathbb{N} \ \, \mathsf{with a bounded range}'. \end{array}$

An \mathcal{L}_2 sentence σ is called pSO if there exists a sentence γ of second-order logic in a relational language (\leq, R_1, \ldots, R_k) such that σ expresses:

For every relations R_1, \ldots, R_k on \mathbb{N} and every infinite set $D \subseteq \mathbb{N}$, there exists an infinite set $H \subseteq D$ such that $(H, \leq, R_1, \ldots, R_k) \models \gamma$.

An \mathcal{L}_2 sentence σ is called pSO if there exists a sentence γ of second-order logic in a relational language (\leq, R_1, \ldots, R_k) such that σ expresses:

For every relations R_1, \ldots, R_k on \mathbb{N} and every infinite set $D \subseteq \mathbb{N}$, there exists an infinite set $H \subseteq D$ such that $(H, \leq, R_1, \ldots, R_k) \models \gamma$.

The 'cut equivalence theorem' holds for any pSO sentence σ :

$$(M, \mathcal{X}) \vDash \sigma \text{ iff } (I, \operatorname{Cod}(M/I)) \vDash \sigma,$$

where $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ and I is a Σ_1^0 -definable proper cut.

Theorem

Let σ be a pSO sentence. Then the following are equivalent:

- (i) $RCA_0^* + \sigma$ is Π_1^1 -conservative over RCA_0^* ,
- (ii) $RCA_0^* + \neg I\Sigma_1^0 \vdash \sigma$,
- (iii) WKL₀* $\vdash \sigma$.

Moreover, if WKL₀ $\not\vdash \sigma$, then RCA₀* + σ is not arithmetically conservative over RCA₀*.

Theorem

Let σ be a pSO sentence. Then the following are equivalent:

- (i) $RCA_0^* + \sigma$ is Π_1^1 -conservative over RCA_0^* ,
- (ii) $RCA_0^* + \neg I\Sigma_1^0 \vdash \sigma$,
- (iii) WKL₀* $\vdash \sigma$.

Moreover, if WKL₀ $\not\vdash \sigma$, then RCA₀* + σ is not arithmetically conservative over RCA₀*.

Theorem

Let σ be a pSO sentence such that there exists an ω -model of the theory WKL₀ + σ . Then WKL₀* + σ is $\forall \Pi_3^0$ -conservative over RCA₀*.

- CAC = For every partial order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is a \preceq -chain or \preceq -antichain.
- ADS = For every linear order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is an \preceq -ascending or \preceq -descending sequence.
- $\mathsf{CRT}_2^2 = \mathsf{for} \; \mathsf{every} \; c \colon [\mathbb{N}]^2 \to \mathsf{2} \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \; S \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \upharpoonright S \; \mathsf{is} \; \mathsf{stable}, \; \mathsf{i.e.} \; \mathsf{for} \; \mathsf{every} \; x \in S \; \mathsf{there} \; \mathsf{exists} \; y \in S \; \mathsf{such} \; \mathsf{that} \; \mathsf{for} \; \mathsf{all} \; z \in S \; \mathsf{if} \; z \geq y, \; \mathsf{then} \; c(x,y) = c(x,z).$

- CAC = For every partial order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is a \preceq -chain or \preceq -antichain.
- ADS = For every linear order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is an \preceq -ascending or \preceq -descending sequence.
- $\mathsf{CRT}_2^2 = \mathsf{for} \; \mathsf{every} \; c \colon [\mathbb{N}]^2 \to \mathsf{2} \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \; S \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \upharpoonright S \; \mathsf{is} \; \mathsf{stable}, \; \mathsf{i.e.} \; \mathsf{for} \; \mathsf{every} \; x \in S \; \mathsf{there} \; \mathsf{exists} \; y \in S \; \mathsf{such} \; \mathsf{that} \; \mathsf{for} \; \mathsf{all} \; z \in S \; \mathsf{if} \; z \geq y, \; \mathsf{then} \; c(x,y) = c(x,z).$

Over RCA0 we have: $\mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{CRT}_2^2$

- CAC = For every partial order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is a \preceq -chain or \preceq -antichain.
- ADS = For every linear order (\mathbb{N}, \preceq) there exists an infinite set $S \subseteq \mathbb{N}$ which is an \preceq -ascending or \preceq -descending sequence.
- $\mathsf{CRT}_2^2 = \mathsf{for} \; \mathsf{every} \; c \colon [\mathbb{N}]^2 \to \mathsf{2} \; \mathsf{there} \; \mathsf{exists} \; \mathsf{an} \; \mathsf{infinite} \; S \subseteq \mathbb{N} \; \mathsf{such} \; \mathsf{that} \; c \upharpoonright S \; \mathsf{is} \; \mathsf{stable}, \; \mathsf{i.e.} \; \mathsf{for} \; \mathsf{every} \; x \in S \; \mathsf{there} \; \mathsf{exists} \; y \in S \; \mathsf{such} \; \mathsf{that} \; \mathsf{for} \; \mathsf{all} \; z \in S \; \mathsf{if} \; z \geq y, \; \mathsf{then} \; c(x,y) = c(x,z).$

Over RCA0 we have: $\mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{CRT}_2^2$

Over RCA₀* one easily proves:

$$\mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS}$$
 and $\mathsf{RT}_2^2 \Rightarrow \mathsf{CRT}_2^2$

Each of CAC, ADS, CRT_2^2 is equivalent over RCA_0^* to a pSO sentence. Therefore:

Each of CAC, ADS, CRT_2^2 is equivalent over RCA_0^* to a pSO sentence. Therefore:

▶ CAC, ADS and CRT $_2^2$ are Π_3^0 -conservative over RCA $_0^*$.

Other Ramsey-like principles

Each of CAC, ADS, CRT_2^2 is equivalent over RCA_0^* to a pSO sentence. Therefore:

- ► CAC, ADS and CRT_2^2 are Π_3^0 -conservative over RCA_0^* .
- ightharpoonup CAC, ADS are not Π₄- and CRT $_2^2$ is not Π₅-conservative over RCA $_0^*$.

Other Ramsey-like principles

Each of CAC, ADS, CRT_2^2 is equivalent over RCA_0^* to a pSO sentence. Therefore:

- ▶ CAC, ADS and CRT_2^2 are Π_3^0 -conservative over RCA_0^* .
- ightharpoonup CAC, ADS are not Π₄- and CRT $_2^2$ is not Π₅-conservative over RCA $_0^*$.
- ▶ Each of CAC, ADS and CRT $_2^2$ holds in some model of RCA $_0^*$ of the form $(M, Δ_1\text{-Def}(M))$. That is, in the absence of IΣ $_1^0$ they may all be computably true.

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R_i}$).

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R_i}$).

► The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R}_i$).

- ► The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R}_i$).

- ► The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \textcolor{red}{\mathsf{COH}} \Rightarrow \mathsf{CRT}_2^2$

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R}_i$).

- ▶ The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{COH} \Rightarrow \mathsf{CRT}_2^2$
- ▶ COH is Π_1^1 -conservative over RCA₀ (Cholak, Jockusch, Slaman 2001).

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R_i}$).

- ▶ The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{COH} \Rightarrow \mathsf{CRT}_2^2$
- ▶ COH is Π_1^1 -conservative over RCA₀ (Cholak, Jockusch, Slaman 2001).
- For any $n \ge 2$, COH is Π_1^1 -conservative over both RCA₀ + I Σ_n^0 and RCA₀ + B Σ_n^0 (Belanger 2022).

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R_i}$).

- ► The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{COH} \Rightarrow \mathsf{CRT}_2^2$
- ▶ COH is Π_1^1 -conservative over RCA₀ (Cholak, Jockusch, Slaman 2001).
- ► For any $n \ge 2$, COH is Π_1^1 -conservative over both RCA₀ + I Σ_n^0 and RCA₀ + B Σ_n^0 (Belanger 2022).

The implication COH \Rightarrow CRT₂² is easily provable in RCA₀*, and CRT₂² is not Π_5 -conservative over RCA₀*. Thus:

COH: For each sequence $(R_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n\in\mathbb{N}}$ (i.e. for every $i\in\mathbb{N}$ either $C\subseteq^*R_i$ or $C\subseteq^*\overline{R_i}$).

- ▶ The decomposition $RT_2^2 \Leftrightarrow SRT_2^2 + COH$ was used in (CJS 2001) to prove Π_1^1 -conservativity of RT_2^2 over $RCA_0 + I\Sigma_2^0$.
- ► $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Mileti 2004).
- $\blacktriangleright \ \mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{COH} \Rightarrow \mathsf{CRT}_2^2$
- ▶ COH is Π_1^1 -conservative over RCA₀ (Cholak, Jockusch, Slaman 2001).
- ► For any $n \ge 2$, COH is Π_1^1 -conservative over both RCA₀ + I Σ_n^0 and RCA₀ + B Σ_n^0 (Belanger 2022).

The implication COH \Rightarrow CRT₂² is easily provable in RCA₀*, and CRT₂² is not Π_5 -conservative over RCA₀*. Thus:

Theorem

COH is not arithmetically conservative over RCA₀*.

 Σ_2^0 -separation: For every two disjoint Σ_2^0 -definable sets A_0 , A_1 there exists a Δ_2^0 -definable set B such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$.

► $RCA_0^* \vdash COH \Rightarrow \Sigma_2^0$ -separation (over RCA_0 proved by Belanger)

- $ightharpoonup \mathsf{RCA}^*_0 \vdash \mathsf{COH} \Rightarrow \Sigma^0_2\text{-separation}$ (over RCA_0 proved by Belanger)
- ▶ On the other hand, $B\Sigma_1 + \exp \vdash \neg \Sigma_2$ -separation

- $lackbox{RCA}_0^* \vdash \mathsf{COH} \Rightarrow \Sigma^0_2 \text{-separation (over RCA}_0 \text{ proved by Belanger)}$
- ▶ On the other hand, $B\Sigma_1 + \exp \vdash \neg \Sigma_2$ -separation
- Thus, in every model of the form $(M, \Delta_1\text{-Def}(M))$ $\neg \Sigma_2^0$ -separation fails.

- ▶ $RCA_0^* \vdash COH \Rightarrow \Sigma_2^0$ -separation (over RCA_0 proved by Belanger)
- ▶ On the other hand, $B\Sigma_1 + \exp \vdash \neg \Sigma_2$ -separation
- Thus, in every model of the form $(M, \Delta_1\text{-Def}(M))$ $\neg \Sigma_2^0$ -separation fails.
- ▶ But there are such models satisfying RT_2^2 (and even RT_{47}^{81}).

 Σ_2^0 -separation: For every two disjoint Σ_2^0 -definable sets A_0 , A_1 there exists a Δ_2^0 -definable set B such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$.

- $lackbox{RCA}_0^* \vdash \mathsf{COH} \Rightarrow \Sigma^0_2 \text{-separation (over RCA}_0 \text{ proved by Belanger)}$
- ▶ On the other hand, $B\Sigma_1 + \exp \vdash \neg \Sigma_2$ -separation
- Thus, in every model of the form $(M, \Delta_1\text{-Def}(M))$ $\neg \Sigma_2^0$ -separation fails.
- But there are such models satisfying RT²₂ (and even RT⁸¹₄₇).

Theorem

 $RCA_0^* \nvdash RT_2^2 \Rightarrow COH$.

 Σ_2^0 -separation: For every two disjoint Σ_2^0 -definable sets A_0 , A_1 there exists a Δ_2^0 -definable set B such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$.

- $lackbox{RCA}_0^* \vdash \mathsf{COH} \Rightarrow \Sigma^0_2 \text{-separation (over RCA}_0 \text{ proved by Belanger)}$
- ▶ On the other hand, $B\Sigma_1 + \exp \vdash \neg \Sigma_2$ -separation
- Thus, in every model of the form $(M, \Delta_1\text{-Def}(M))$ $\neg \Sigma_2^0$ -separation fails.
- But there are such models satisfying RT²₂ (and even RT⁸¹₄₇).

Theorem

 $RCA_0^* \nvdash RT_2^2 \Rightarrow COH$.

Theorem (Mengzhou Sun, 2025)

 $RCA_0^* + COH implies I\Sigma_1^0$.

 RT_2^2 is $\forall \Pi_3^0$ -conservative over both RCA_0 and RCA_0^* , but the proofs are quite different. Can anything more be said about this?

 RT_2^2 is $\forall \Pi_3^0$ -conservative over both RCA_0 and RCA_0^* , but the proofs are quite different. Can anything more be said about this?

Theorem (Kołodziejczyk, Wong, Yokyama)

 $RCA_0 + RT_2^2$ is polynomially simulated by RCA_0 with respect to $\forall \Pi_3^0$ sentences.

 RT_2^2 is $\forall \Pi_3^0$ -conservative over both RCA_0 and RCA_0^* , but the proofs are quite different. Can anything more be said about this?

Theorem (Kołodziejczyk, Wong, Yokyama)

 $RCA_0 + RT_2^2$ is polynomially simulated by RCA_0 with respect to $\forall \Pi_3^0$ sentences.

Theorem (Kołodziejczyk, Wong, Yokyama)

 $RCA_0^* + RT_2^2$ has non-elementary speedup over RCA_0^* with respect to Σ_1 sentences.

 RT_2^2 is $\forall \Pi_3^0$ -conservative over both RCA_0 and RCA_0^* , but the proofs are quite different. Can anything more be said about this?

Theorem (Kołodziejczyk, Wong, Yokyama)

 $RCA_0 + RT_2^2$ is polynomially simulated by RCA_0 with respect to $\forall \Pi_3^0$ sentences.

Theorem (Kołodziejczyk, Wong, Yokyama)

 $RCA_0^* + RT_2^2$ has non-elementary speedup over RCA_0^* with respect to Σ_1 sentences.

I.e., for every elementary computable function f there exists a Σ_1 sentence σ and its proof δ in RCA $_0^*$ + RT $_2^2$ such that every proof of σ in RCA $_0^*$ has size greater than $f(|\delta|)$.

The proof of speedup for $RCA_0^* + RT_2^2$ relies on the exponential lower bound on Ramsey numbers for finite version of RT_2^2 :

There exists a 2-colouring of a set of size $[2^{\frac{\kappa}{2}}]^2$ without a homogeneous subset containing k elements.

The proof of speedup for $RCA_0^* + RT_2^2$ relies on the exponential lower bound on Ramsey numbers for finite version of RT_2^2 :

There exists a 2-colouring of a set of size $[2^{\frac{k}{2}}]^2$ without a homogeneous subset containing k elements.

However, by Dilworth's theorem, the finite version of CAC has only polynomial upper bound:

In every partial order on a set of size k(k-1) there exists a chain or an antichain of size k.

The proof of speedup for $RCA_0^* + RT_2^2$ relies on the exponential lower bound on Ramsey numbers for finite version of RT_2^2 :

There exists a 2-colouring of a set of size $\left[2^{\frac{k}{2}}\right]^2$ without a homogeneous subset containing k elements.

However, by Dilworth's theorem, the finite version of CAC has only polynomial upper bound:

In every partial order on a set of size k(k-1) there exists a chain or an antichain of size k.

Theorem

RCA₀* + CAC, and hence RCA₀* + ADS, is polynomially simulated by RCA₀* with respect to $\forall \Pi_3^0$ sentences.

► Does RT₂³ imply RT₂⁴ over RCA₀*?

- ▶ Does RT_2^3 imply RT_2^4 over RCA_0^* ?
- ▶ Does ADS or CAC imply CRT₂ over RCA₀*?

- ▶ Does RT_2^3 imply RT_2^4 over RCA_0^* ?
- ▶ Does ADS or CAC imply CRT_2^2 over RCA_0^* ?
- ▶ Does $RCA_0^* + RT_2^2$ imply $I\Sigma_1 \Rightarrow B\Sigma_2$?

- ▶ Does RT_2^3 imply RT_2^4 over RCA_0^* ?
- ▶ Does ADS or CAC imply CRT_2^2 over RCA_0^* ?
- ▶ Does $RCA_0^* + RT_2^2$ imply $I\Sigma_1 \Rightarrow B\Sigma_2$?
- ▶ Is there a *nice* axiomatization of R²?

- ▶ Does RT_2^3 imply RT_2^4 over RCA_0^* ?
- Does ADS or CAC imply CRT² over RCA^{*}?
- ▶ Does $RCA_0^* + RT_2^2$ imply $I\Sigma_1 \Rightarrow B\Sigma_2$?
- ▶ Is there a *nice* axiomatization of R²?
- ▶ Is $RCA_0^* + CRT_2^2$ polynomially simulated by RCA_0^* with respect to $\forall \Pi_3^0$ sentences?

References

Marta Fiori Carones, Leszek A. Kołodziejczyk, Tin Lok Wong, Keita Yokoyama. *An isomorphism theorem for models of Weak König's Lemma without primitive recursion*, Journal of the European Mathematical Society, online first, 2024.

Marta Fiori Carones, Leszek A. Kołodziejczyk, Katarzyna W. Kowalik. *Weaker cousins of Ramsey's theorem over a weak base theory.* Annals of Pure and Applied Logic, 172(10), 2021, article 103028.

Leszek A. Kołodziejczyk, Katarzyna W. Kowalik, Keita Yokoyama. *How strong is Ramsey's theorem if infinity can be weak?*, Journal of Symbolic Logic, 88(2) (2023), 620-639.

Leszek A. Kołodziejczyk, Tin Lok Wong, Keita Yokoyama. *Ramsey's theorem for pairs, collection, and proof size*, Journal of Mathematical Logic, 24(2) (2024), paper no. 2350007.

Thank you!