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Posets

Let (P,⪯) be a poset. By | we denote the incomparability relation:
x | y if and only if x ⪯̸ y and y ⪯̸ x.

A linear order, or chain, is a poset in which any two distinct
elements are comparable.

A poset (P,⪯1) extends a poset (P,⪯2) if ⪯2 ⊆ ⪯1.

A linearization of (P,⪯) is an extension of (P,⪯) to a linear order.
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Dimension

Definition

Let L be a family of linearizations of (P,⪯).
L realizes (P,⪯) if

⋂
L = ⪯.

In practice, L realizes (P,⪯) means that for every x, y ∈ P with
x | y there exist ⊴1,⊴2 ∈ L such that x ⊴1 y and y ⊴2 x.

Definition

The dimension dim(P,⪯) of (P,⪯) is the least cardinality of a
realization of (P,⪯).

The dimension of a chain is 1, the dimension of an antichain with
at least two elements is 2.

dim(P,⪯) ≤ max{1, |{ (x, y) ∈ P 2 : x | y }|}

but this bound is usually very rough, because a single linearization
can take care of many incomparabilities.
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Dimension always exists in RCA0

Proposition

RCA0 proves that every (countable) poset has a linearization, and
this can be proved uniformly: if we have a (countable) sequence of
linear orders there is a sequence of linerarizations.

Proposition

RCA0 proves that for each (countable) (P,⪯) there exists a set
{⊴n: n ∈ N} of linearizations that realizes (P,⪯), i.e. such that for
each x, y ∈ P x ⪯ y if and only if x ⊴n y for every n ∈ N.

Thus in RCA0 every poset has a (countable) dimension.
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The poset Fn

The basic example of a poset of dimension n:

Definition

Let n > 1 and Fn = {ai, bi : i < n}. We equip Fn with the
relation ai ≺ bj whenever i ̸= j.

Fn can be realized as the collection of singletons and co-singletons
in the powerset of a set of size n, ordered by inclusion.

Lemma

RCA0 proves that if {⊴0, . . . ,⊴n−1} realizes Fn, then for each
i < n there is exactly one k < n such that bi ◁k ai.
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Bounding Theorems

Theorem (Hiraguti, 1955)

Let (P,⪯) be a poset:

• if x0 ∈ P then dim(P,⪯) ≤ dim(P \ {x0},⪯) + 1;

• if C ⊆ P is a chain then dim(P,⪯) ≤ dim(P \ C,⪯) + 2;

• if C0, C1 ⊆ P are incomparable chains then
dim(P,⪯) ≤ dim(P \ C0 ∪ C1,⪯) + 2.

• DBp: if x0 ∈ P then dim(P,⪯) ≤ dim(P \ {x0},⪯) + 1.

• DBin: if n > 0 and C0, . . . , Cn−1 ⊆ P are n pairwise
incomparable chains, then
dim(P,⪯) ≤ dim(P \

⋃
i<nCi,⪯) + max{2, n}.

• DBcn: if n > 0 and C0, . . . , Cn−1 ⊆ P are n chains, then
dim(P,⪯) ≤ dim(P \

⋃
i<nCi,⪯) + 2n.
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DBi1 = DBc1 is optimal

Example

Consider Fn+2 and the chain C = {an, bn+1}. The poset Fn+2 \C
is a copy of Fn+1 with an extra comparability.

dim(Fn+2 \ C) = n and dim(Fn+2) = dim(Fn+2 \ C) + 2.



DBi2 is optimal

Example

Consider Fn+2, C0 = {an+1, bn} and C1 = {an, bn+1}. The poset
Fn+2 \ C0 ∪ C1 is a copy of Fn.

dim(Fn+2 \ C0 ∪ C1) = n and
dim(Fn+2) = dim(Fn+2 \ C0 ∪ C1) + 2.



DBc2 is optimal

Do the chains in DBi2 really have to be incomparable?

Example

Consider F6, C0 = {a0, b1} and C1 = {a2, b3}. The poset
F6 \ C0 ∪ C1 is a copy of F4 with two extra comparabilities.

dim(F6 \ C0 ∪ C1) = 2 and dim(F6) = dim(F6 \ C0 ∪ C1) + 4.
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Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCA0, the following are equivalent:

1 WKL0;

2 every acyclic relation extends to a linear order.

Lemma

Within RCA0, the following are equivalent:

1 WKL0;

2 let (P,⪯) be a poset and C0, C1 ⊆ P incomparable chains;
there exists a linearization ⊴ such that for c0 ∈ C0, c1 ∈ C1

and x ∈ P , c0 | x implies x ⊴ c0 and c1 | x implies c1 ⊴ x.
[⊴ puts C0 at the top and C1 at the bottom of P ]

Both lemmas are uniform: WKL0 proves the version for countable
sequences.
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WKL0 proves DBin and DBcn

To prove DBi2 in WKL0 let C0, C1 ⊆ P be incomparable chains,
and {⊴0, . . . ,⊴m−1} realize (P \ C0 ∪ C1,⪯).

First extend the acyclic relation ⊴i ∪ ⪯ on P to a linear order ⊴′
i:

⊴′
0, . . . ,⊴

′
m−1 take care of the incomparabilities between elements

of P \ C0 ∪ C1.

Let ⊴′
m put C0 at the top and C1 at the bottom of P .

Let ⊴′
m+1 put C1 at the top and C0 at the bottom of P .

⊴′
m and ⊴′

m+1 take care of the incomparabilities between an
element of C0 ∪ C1 and the elements of P .

Therefore dim(P,⪯) ≤ m+ 2.

Similarly one shows WKL0 ⊢ DBin for every n > 2.

DBi1 follows from DBi2 (take one of the chains to be empty).

To prove DBcn we apply the lemma to the pairs Ci, ∅ and ∅, Ci for
every new chain Ci.
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DBi1 implies WKL0, step 1
Let f, g be injective functions with disjoint images.
We need (P,⪯) so that every family of linearizations realizing
(P,⪯) computes a set separating ran(f) from ran(g).

P = {xn, yn : n ∈ N } ∪ { crj , drj , prj , qrj : j < 3, r ∈ N } consists of
layers ordered like ω:

• if n does not belong to the ranges of f and g then layer n
consists of the antichain {xn, yn};

• if n = f(r) then layer n is a copy of F4:

• if n = g(s) then layer n is a copy of F4:

Let C = {cr1, dr2, ps1, qs2 : r, s ∈ N}, which is a chain.
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DBi1 implies WKL0, step 2

In (P \ C,⪯) each layer is either an antichain of size two or

In any case it has dimension 2.

Distinct layers are linearly ordered, so that dim(P \ C,⪯) = 2 and
two computable linearizations that realize it.

By DBi1, dim(P,⪯) ≤ 4. Let {⊴0,⊴1,⊴2,⊴3} realize (P,⪯).

If n ∈ ran(f) then |{ i < 4 : yn ⊴i x
n }| = 1, while if n ∈ ran(g)

then |{ i < 4 : yn ⊴i x
n }| = 3.

{n : |{ i < 4 : yn ⊴i x
n }| = 1 } separates ran(f) from ran(g).
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The reverse mathematics of bounding theorems for
chains

Theorem

Let n > 0. Within RCA0, the following are equivalent:

1 WKL0;

2 DBin;

3 DBcn.

The reversals from DBin when n ≥ 4 require to have the poset not
completely layered.
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Proving DBp: dim(P,⪯) ≤ dim(P \ {x0},⪯) + 1
Let {⊴0, . . . ,⊴m−1} realize (P \ {x0},⪯). Let I = {x : x ≺ x0 },
F = { y : x0 ≺ y }: if x ∈ I, y ∈ F then x ≺ y and hence x ◁i y.

Let Bi ⊆ P \ {x0} be ⊴i-downward closed such that I ⊆ Bi and
F ∩Bi = ∅.

Define linearizations ⊴′
0 and ⊴′′

0 of (P,⪯) by:

I ◁′
0 {x0} ◁′

0 P \ {x0} ∪ I;

P \ {x0} ∪ F ◁′′
0 {x0} ◁′′

0 F ;

(each piece ordered by ⊴0).
⊴′

0 and ⊴′′
0 take care of the incomparabilities between x0 and the

elements of P . Moreover, on each pair in P \ {x0} at least one of
⊴′

0 and ⊴′′
0 preserves the order of ⊴0.

For i = 1, . . . ,m− 1 define a linearization ⊴′
i of (P,⪯) by

Bi ⊴
′
i {x0} ⊴′

i P \ {x0} ∪Bi
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A poset separation principle

The key step of the previous proof is obtaining Bi for i < m,
which exist by a separation principle.

Lemma (Frittaion-M 2014)

Within RCA0, the following are equivalent:

1 WKL0;

2 if (P,⪯) is a poset and I, F ⊆ P are such that
∀x ∈ I ∀y ∈ F y ⪯̸ x then there exists a downward closed set
B ⊆ P such that I ⊆ B and B ∩ F = ∅.

Applying (2) to the disjoint union of (P,⊴0), . . . , (P,⊴m−1) we
get the Bi’s.

However to prove the reversal of the lemma we used a poset with
plenty of infinite antichains (in I, F and P \ I ∪ F ).
Here we are applying (2) to a poset of width m, so it is possible
that the full strength of WKL0 is not needed.
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A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCA0 proves that if (P,⊴) is a linear order and I, F ⊆ P are such
that ∀x ∈ I ∀y ∈ F y ⋬ x then there exists a downward closed set
B ⊆ P such that I ⊆ B and B ∩ F = ∅.

The proof is non-uniform:

• if there exists z ∈ P such that ∀x ∈ I ∀y ∈ F x ◁ z ◁ y then
we can take B = {u ∈ P : u ⊴ z };

• if z does not exists then for every u ∈ P then

∃x ∈ I u ⊴ x ⇐⇒ ∀y ∈ F u ◁ y

and we can define B by ∆0
1-comprehension.

To prove DBp we use LSL m times, asking m Σ0
2 questions.

By bounded Σ0
2-comprehension, i.e. Σ0

2-induction, we know which
of the two definitions of Bi we must use (in the first case the least
Π0

1 principle finds the appropriate z).
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The upper bound for DBp

Theorem

The disjunction of WKL0 and RCA0 + IΣ0
2 proves DBp.

In the literature there are a few statements known to be equivalent
to WKL0 ∨ IΣ0

2:

• the existence for all n of n-fold iterates of continuous
mappings of the closed unit interval into itself
(Friedman-Simpson-Yu, 1993);

• every complete consistent theory with countably many types
and whose types have the pairwise full amalgamation property
has a saturated model (Belanger, 2015) [the equivalence is
over RCA0 + BΣ0

2, and BΣ0
2 cannot be removed];

• some implications between amalgamation properties of
theories (Belanger, 2015).

So far we haven’t been able to exploit these results or mimic their
proofs to show that DBp is equivalent to WKL0 ∨ IΣ0

2.
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The end

Thank you for your attention!
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