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Posets

Let (P, <) be a poset. By | we denote the incomparability relation:
z|yifandonly if z Ay and y £ z.

A linear order, or chain, is a poset in which any two distinct
elements are comparable.



Posets

Let (P, <) be a poset. By | we denote the incomparability relation:
z|yifandonly if z Ay and y £ z.

A linear order, or chain, is a poset in which any two distinct
elements are comparable.

A poset (P, =<1) extends a poset (P, <g) if <o C <.

A linearization of (P, <) is an extension of (P, <) to a linear order.



Dimension

Definition
Let £ be a family of linearizations of (P, <).
L realizes (P, =) if L = <.

In practice, L realizes (P, <) means that for every z,y € P with
x | y there exist <1, <99 € L such that  <; y and y <3 .



Dimension

Definition
Let £ be a family of linearizations of (P, <).
L realizes (P, <) if L = <.

In practice, L realizes (P, <) means that for every z,y € P with
x | y there exist <1, <99 € L such that  <; y and y <3 .

Definition
The dimension dim(P, <) of (P, <) is the least cardinality of a
realization of (P, <).

The dimension of a chain is 1, the dimension of an antichain with
at least two elements is 2.

dim(P, <) < max{1,|[{ (z,y) € P*:z | y}|}

but this bound is usually very rough, because a single linearization
can take care of many incomparabilities.



Dimension always exists in RCA

Proposition

RCAq proves that every (countable) poset has a linearization, and
this can be proved uniformly: if we have a (countable) sequence of
linear orders there is a sequence of linerarizations.



Dimension always exists in RCA

Proposition

RCAq proves that every (countable) poset has a linearization, and
this can be proved uniformly: if we have a (countable) sequence of
linear orders there is a sequence of linerarizations.

Proposition

RCAq proves that for each (countable) (P, <) there exists a set
{<n: n € N} of linearizations that realizes (P, <), i.e. such that for
each xz,y € P x Xy if and only if x <, y for every n € N.

Thus in RCAq every poset has a (countable) dimension.



The poset F),

The basic example of a poset of dimension n:
Definition

Let n > 1 and F,, = {a;,b; : i <n}. We equip F,, with the
relation a; < b; whenever i # j.

bo b e bn—2 bn—1

g a1 e Apn—2 Un—1

F,, can be realized as the collection of singletons and co-singletons
in the powerset of a set of size n, ordered by inclusion.



The poset F),

The basic example of a poset of dimension n:
Definition
Let n > 1 and F,, = {a;,b; : i < n}. We equip F,, with the

relation a; < b; whenever i # j.

bo b e bn—2 bn—1

Le40)] a1 e Apn—2 Un—1

F,, can be realized as the collection of singletons and co-singletons
in the powerset of a set of size n, ordered by inclusion.

Lemma

RCAq proves that if {<Jy,...,<,_1} realizes F,,, then for each
i < n there is exactly one k < n such that b; <, a;.



Bounding Theorems

Theorem (Hiraguti, 1955)

Let (P, =) be a poset:
¢ ifzg € P then dim(P, =) < dim(P \ {zo}, %)+ 1;
e ifC C P is a chain then dim(P, %) < dim(P \ C, =) + 2;

e fCy,C1 C P are incomparable chains then
dim(P, <) < dim(P \ Co U C1, =) + 2.
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Bounding Theorems

Theorem (Hiraguti, 1955)
Let (P, =) be a poset:

if 7o € P then dim(P, <) < dim(P \ {zo}, <) + 1;
if C C P is a chain then dim(P, <) < dim(P \ C, =) + 2;

if Cy,Cy C P are incomparable chains then
dim(P, <) < dim(P \ Co U C1, =) + 2.

DBp: if zg € P then dim(P, <) < dim(P \ {zo}, <) + 1.
DBi,: if n >0 and Cp,...,C,,—1 C P are n pairwise
incomparable chains, then

dim(P, =) < dim(P \ U;,, Ci, 2) + max{2,n}.

DBcp: if n >0 and Cy,...,Cp_1 C P are n chains, then
dim(P, <) < dim(P \ U,_,, Ci, =) + 2n.

<n



DBi; = DBc; is optimal

Example

Consider F), o and the chain C' = {ay,b,+1}. The poset F, 1o\ C
is a copy of F,,11 with an extra comparability.

h(] — b[ - bn—l _ hn _ bJ’H—l

ag = ar n—1  an T ang

dim(F,42 \ C) = n and dim(F,+2) = dim(Fp42 \ C) + 2.



DBi, is optimal

Example

Consider F, 12, Co = {an+1,bn} and Cy = {an, bp41}. The poset
Foi2\ CoUC is a copy of F,.

1

dim(Fn+2 \ Co U 01) = n and
d1m(Fn+2) = dim(Fn+2 \ C() U Cl) + 2.



DBc, is optimal

Do the chains in DBi, really have to be incomparable?

Example

Consider Fg, Cy = {ag, b1} and C1 = {az,bs}. The poset
Fs \ CopUCy is a copy of Fy with two extra comparabilities.

bo ba b bs

SR

aj a3 .4 as

dim(Fﬁ \ Co U Cl) = 2 and dim(Fa) = dim(FG \ Co U Cl) + 4.
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Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCAy, the following are equivalent:
® WKLy,

@ every acyclic relation extends to a linear order.
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Within RCAy, the following are equivalent:

0 WKLy,

@ let (P, X) be a poset and Cy, Cy C P incomparable chains;
there exists a linearization < such that for co € Cy, ¢1 € C
andxz € P, ¢y | x implies x < co and ¢y |  implies ¢; < x.
[ puts Cy at the top and C at the bottom of P]



Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCAy, the following are equivalent:
O® WKLy;

@ every acyclic relation extends to a linear order.

Lemma
Within RCAy, the following are equivalent:

@ WKLy;

@ let (P, X) be a poset and Cy, Cy C P incomparable chains;
there exists a linearization < such that for co € Cy, ¢1 € C
andxz € P, ¢y | x implies x < co and ¢y |  implies ¢; < x.
[ puts Cy at the top and C at the bottom of P]

Both lemmas are uniform: WKLg proves the version for countable
sequences.



WKL, proves DBi, and DBc,

To prove DBiy in WKL let Cp, Cy C P be incomparable chains,
and {do, ..., <1} realize (P \ Cy U Cq, ).
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of P \ CoUC(C].
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To prove DBiy in WKL let Cy, C7 € P be incomparable chains,
and {Jo, ..., <1} realize (P \ Cp Uy, <).
First extend the acyclic relation <; U < on P to a linear order <’:
<G, - .-, <, take care of the incomparabilities between elements
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Let </ put Cj at the top and C; at the bottom of P.
Let <1 put Cy at the top and Cj at the bottom of P.

mand <7 take care of the incomparabilities between an
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Therefore dim(P, <) < m + 2.

Similarly one shows WKL - DBi, for every n > 2.
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To prove DBi> in WKL let C, C1 C P be incomparable chains,
and {do, ..., <1} realize (P \ Cy U Cq, ).
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Similarly one shows WKL - DBi, for every n > 2.
DBi; follows from DBiy (take one of the chains to be empty).



WKL, proves DBi, and DBc,

To prove DBi> in WKL let C, C1 C P be incomparable chains,
and {do, ..., <1} realize (P \ Cy U Cq, ).

First extend the acyclic relation <; U < on P to a linear order <’:

<G, - .-, <, take care of the incomparabilities between elements
of P \ Co U Ch.

Let </ put Cj at the top and C; at the bottom of P.

Let <741 put C7 at the top and Cj at the bottom of P.
mand <7 take care of the incomparabilities between an

eIement of Cy Uy and the elements of P.

Therefore dim(P, <) < m + 2.

Similarly one shows WKL - DBi, for every n > 2.
DBi; follows from DBiy (take one of the chains to be empty).

To prove DBc, we apply the lemma to the pairs C;, ) and 0, C; for
every new chain C;.



DBi; implies WKL, step 1
Let f, g be injective functions with disjoint images.

We need (P, <) so that every family of linearizations realizing
(P, <) computes a set separating ran(f) from ran(g).
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We need (P, <) so that every family of linearizations realizing
(P, <) computes a set separating ran(f) from ran(g).
P={a"y":neN}yu{c,d}p} q;:j<3,7 €N} consists of
layers ordered like w:

e if n does not belong to the ranges of f and g then layer n
consists of the antichain {z",y"};

e if n = f(r) then layer n is a copy of Fj:

n " r
Y dy dy dy

n z r é é r Z r
z o a )

® if n = g(s) then layer n is a copy of Fj:



DBi; implies WKL, step 1

Let f, g be injective functions with disjoint images.
We need (P, <) so that every family of linearizations realizing
(P, <) computes a set separating ran(f) from ran(g).
P={a"y":neN}yu{c,d}p} q;:j<3,7 €N} consists of
layers ordered like w:

e if n does not belong to the ranges of f and g then layer n

consists of the antichain {z",y"};
e if n = f(r) then layer n is a copy of Fj:

n " r
Y dy dy dy

n z r é é r Z r
z o a )

® if n = g(s) then layer n is a copy of Fj:

ks @ ar @
y" 7 i 2

Let C = {c},d5,p;, q5 : s € N}, which is a chain.



DBi; implies WKL, step 2

In (P \ C, =) each layer is either an antichain of size two or

y" dy di z" % ai
z" % < y" P P}

In any case it has dimension 2.
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n T T
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Distinct layers are linearly ordered, so that dim(P \ C, <) =2 and
two computable linearizations that realize it.




DBi; implies WKL, step 2

In (P \ C, =) each layer is either an antichain of size two or

y" dy di z" % a

In any case it has dimension 2.

Distinct layers are linearly ordered, so that dim(P \ C, <) =2 and
two computable linearizations that realize it.

By DBijy, dim(P, %) < 4. Let {Jp, <y, D9, J3} realize (P, =X).

If n € ran(f) then |[{i <4:y"™ <; 2" }| = 1, while if n € ran(g)
then [{i <4:y" < 2"} =3.

{n:|{i<4:y" ;2™ }| =1} separates ran(f) from ran(g).



The reverse mathematics of bounding theorems for
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Theorem

Let n > 0. Within RCAq, the following are equivalent:
@ WKLy,
® DBi,;
©® DBc,.



The reverse mathematics of bounding theorems for
chains

Theorem

Let n > 0. Within RCAq, the following are equivalent:
@ WKLy,
® DBi,;
©® DBc,.

The reversals from DBIi,, when n > 4 require to have the poset not
completely layered.



Reverse mathematics of DB,

© Reverse mathematics of DB,



Proving DB,: dim(P, <) < dim(P \ {zo}, %) +1

Let {Jo,..., <1} realize (P \ {z0},<X). Let I ={z:2 <z},
F={y:zo<y}: ifxel, yec F then x <y and hence z <; y.
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Let {Do,..., <1} realize (P\ {z0},X). Let I ={x: 2 <z},
F={y:zo<y}: ifxel, yec F then x <y and hence z <; y.
Let B; C P\ {x0} be <;-downward closed such that I C B; and
FnB;=0.
Define linearizations <, and <} of (P, <) by:

I < {@o} <o P\ {zo} U T;
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(each piece ordered by <).
<f, and <f take care of the incomparabilities between x( and the
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Proving DB,: dim(P, %) < dim(P \ {zo}, <) +1

Let {Do,..., <1} realize (P\ {z0},X). Let I ={x: 2 <z},
F={y:zo<y}: ifxel, yec F then x <y and hence z <; y.
Let B; C P\ {x0} be <;-downward closed such that I C B; and
FnB;=0.
Define linearizations <, and <} of (P, <) by:

I <1 {zo} g P\ {zo} UL

P\ A{zo} UF < {xo} < F;
(each piece ordered by <).
<f, and <f take care of the incomparabilities between x( and the
elements of P. Moreover, on each pair in P\ {z¢} at least one of
<f, and <) preserves the order of <.
Fori=1,...,m — 1 define a linearization <} of (P, <) by

B; < {wo} < P\ {xo} U B;
(each piece ordered by <;).
{<6, 96,9, ..., <, } realize (P, <)
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A poset separation principle

The key step of the previous proof is obtaining B; for ¢ < m,
which exist by a separation principle.

Lemma (Frittaion-M 2014)

Within RCAy, the following are equivalent:
® WKLy,
@ if (P,=X) is a poset and I, F C P are such that

Va € IVy € F'y A x then there exists a downward closed set
B C P suchthat | C Band BNF = 0.

Applying (2) to the disjoint union of (P, <g), ..., (P, <p—1) we
get the B;'s.

However to prove the reversal of the lemma we used a poset with
plenty of infinite antichains (in I, F and P\ T UF).

Here we are applying (2) to a poset of width m, so it is possible
that the full strength of WKLy is not needed.



A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCAq proves that if (P, <) is a linear order and I, F C P are such
that Vo € IVy € Fy 4 x then there exists a downward closed set
B C P such that I C B and BN F = ().



A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCAq proves that if (P, <) is a linear order and I, F C P are such
that Vo € IVy € Fy 4 x then there exists a downward closed set
B C P such that I C B and BN F = ().

The proof is non-uniform:

® if there exists z € P such that Vx € IVy € F'xz < z < y then
we can take B={u € P:u <z}

® if z does not exists then for every u € P then
Jreludzr <= Vye Fu<y
and we can define B by AY-comprehension.



A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCA proves that if (P, <) is a linear order and I, F' C P are such
that Vo € IVy € Fy 4 x then there exists a downward closed set
B C P such that I C B and BN F = ().

The proof is non-uniform:
® if there exists z € P such that Vx € IVy € F'xz < z < y then
we can take B={u € P:u <z}
® if z does not exists then for every u € P then
dreludx < VYye Fudy
and we can define B by AY-comprehension.

To prove DB, we use LSL m times, asking m %9 questions.

By bounded Zg—comprehension, ie. EQ—induction, we know which
of the two definitions of B; we must use (in the first case the least
I19 principle finds the appropriate z).



The upper bound for DB,

Theorem
The disjunction of WKLy and RCAq + 129 proves DB,.
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Theorem
The disjunction of WKLq and RCAq + I1XY proves DB5.

In the literature there are a few statements known to be equivalent
to WKL Vv IX9:
® the existence for all n of n-fold iterates of continuous
mappings of the closed unit interval into itself
(Friedman-Simpson-Yu, 1993);
® every complete consistent theory with countably many types
and whose types have the pairwise full amalgamation property
has a saturated model (Belanger, 2015) [the equivalence is
over RCA; + BX, and BXY cannot be removed];

® some implications between amalgamation properties of
theories (Belanger, 2015).



The upper bound for DB,

Theorem
The disjunction of WKLq and RCAq + I1XY proves DB5.

In the literature there are a few statements known to be equivalent
to WKL Vv IX9:
® the existence for all n of n-fold iterates of continuous
mappings of the closed unit interval into itself
(Friedman-Simpson-Yu, 1993);
® every complete consistent theory with countably many types
and whose types have the pairwise full amalgamation property
has a saturated model (Belanger, 2015) [the equivalence is
over RCA; + BX, and BXY cannot be removed];

® some implications between amalgamation properties of
theories (Belanger, 2015).
So far we haven't been able to exploit these results or mimic their
proofs to show that DB, is equivalent to WKLq V 1329



The end

Thank you for your attention!
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