Progetto PRIN 2022 - Models, sets and classifications Codice n. 2022TECZJA CUP N. G53D23001890006. "Finanziato dall'Unione Europea – Next-Generation EU – M4 C2 I1.1" RS Dimonte

Some results about the reverse mathematics of dimension of posets

Alberto Marcone

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università di Udine, Italy

Joint work with Andrea Volpi (originally also with Marta Fiori Carones)

August 9, 2025

Combinatorics (and much more) in subsystems of second-order arithmetic: a conference in honor of Jeff Hirst

Outline

1 Dimension of Posets

2 Reverse mathematics of DBi_n and DBc_n

 ${\bf 3}$ Reverse mathematics of DB_p

Dimension of Posets

1 Dimension of Posets

2 Reverse mathematics of DBin and DBcn

3 Reverse mathematics of DB_p

Posets

Let (P, \preceq) be a poset. By | we denote the incomparability relation: $x \mid y$ if and only if $x \not\preceq y$ and $y \not\preceq x$.

A linear order, or chain, is a poset in which any two distinct elements are comparable.

Posets

Let (P, \preceq) be a poset. By | we denote the incomparability relation: $x \mid y$ if and only if $x \npreceq y$ and $y \npreceq x$.

A linear order, or chain, is a poset in which any two distinct elements are comparable.

A poset (P, \preceq_1) extends a poset (P, \preceq_2) if $\preceq_2 \subseteq \preceq_1$.

A linearization of (P, \preceq) is an extension of (P, \preceq) to a linear order.

Dimension

Definition

Let \mathcal{L} be a family of linearizations of (P, \preceq) .

$$\mathcal{L}$$
 realizes (P, \preceq) if $\bigcap \mathcal{L} = \preceq$.

In practice, $\mathcal L$ realizes (P, \preceq) means that for every $x,y \in P$ with $x \mid y$ there exist $\unlhd_1, \unlhd_2 \in \mathcal L$ such that $x \unlhd_1 y$ and $y \unlhd_2 x$.

Dimension

Definition

Let \mathcal{L} be a family of linearizations of (P, \preceq) . \mathcal{L} realizes (P, \preceq) if $\bigcap \mathcal{L} = \preceq$.

In practice, \mathcal{L} realizes (P, \preceq) means that for every $x, y \in P$ with $x \mid y$ there exist $\unlhd_1, \unlhd_2 \in \mathcal{L}$ such that $x \unlhd_1 y$ and $y \unlhd_2 x$.

Definition

The dimension $\dim(P, \preceq)$ of (P, \preceq) is the least cardinality of a realization of (P, \preceq) .

The dimension of a chain is 1, the dimension of an antichain with at least two elements is 2.

$$\dim(P, \preceq) \le \max\{1, |\{(x, y) \in P^2 : x \mid y\}|\}$$

but this bound is usually very rough, because a single linearization can take care of many incomparabilities.

Dimension always exists in RCA₀

Proposition

 RCA_0 proves that every (countable) poset has a linearization, and this can be proved uniformly: if we have a (countable) sequence of linear orders there is a sequence of linearizations.

Dimension always exists in RCA₀

Proposition

 RCA_0 proves that every (countable) poset has a linearization, and this can be proved uniformly: if we have a (countable) sequence of linear orders there is a sequence of linearizations.

Proposition

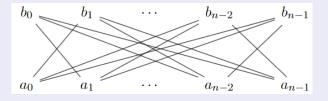
RCA₀ proves that for each (countable) (P, \preceq) there exists a set $\{ \preceq_n : n \in \mathbb{N} \}$ of linearizations that realizes (P, \preceq) , i.e. such that for each $x, y \in P$ $x \preceq y$ if and only if $x \preceq_n y$ for every $n \in \mathbb{N}$.

Thus in RCA₀ every poset has a (countable) dimension.

The basic example of a poset of dimension n:

Definition

Let n > 1 and $F_n = \{a_i, b_i : i < n\}$. We equip F_n with the relation $a_i \prec b_j$ whenever $i \neq j$.

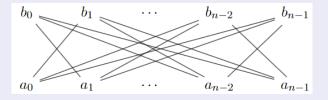


 F_n can be realized as the collection of singletons and co-singletons in the powerset of a set of size n, ordered by inclusion.

The basic example of a poset of dimension n:

Definition

Let n > 1 and $F_n = \{a_i, b_i : i < n\}$. We equip F_n with the relation $a_i \prec b_j$ whenever $i \neq j$.



 F_n can be realized as the collection of singletons and co-singletons in the powerset of a set of size n, ordered by inclusion.

Lemma

RCA₀ proves that if $\{ \leq_0, \ldots, \leq_{n-1} \}$ realizes F_n , then for each i < n there is exactly one k < n such that $b_i \triangleleft_k a_i$.

Theorem (Hiraguti, 1955)

- if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$;
- if $C \subseteq P$ is a chain then $\dim(P, \preceq) \leq \dim(P \setminus C, \preceq) + 2$;
- if $C_0, C_1 \subseteq P$ are incomparable chains then $\dim(P, \preceq) \leq \dim(P \setminus C_0 \cup C_1, \preceq) + 2$.

Theorem (Hiraguti, 1955)

- if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$;
- if $C \subseteq P$ is a chain then $\dim(P, \preceq) \leq \dim(P \setminus C, \preceq) + 2$;
- if $C_0, C_1 \subseteq P$ are incomparable chains then $\dim(P, \preceq) \leq \dim(P \setminus C_0 \cup C_1, \preceq) + 2$.
- DB_{p} : if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$.

Theorem (Hiraguti, 1955)

- if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$;
- if $C \subseteq P$ is a chain then $\dim(P, \preceq) \leq \dim(P \setminus C, \preceq) + 2$;
- if $C_0, C_1 \subseteq P$ are incomparable chains then $\dim(P, \preceq) \leq \dim(P \setminus C_0 \cup C_1, \preceq) + 2$.
- DB_{p} : if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$.
- $\mathsf{DBi_n}$: if n > 0 and $C_0, \ldots, C_{n-1} \subseteq P$ are n pairwise incomparable chains, then $\dim(P, \preceq) \leq \dim(P \setminus \bigcup_{i < n} C_i, \preceq) + \max\{2, n\}.$

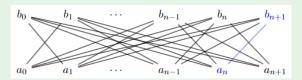
Theorem (Hiraguti, 1955)

- if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$;
- if $C \subseteq P$ is a chain then $\dim(P, \preceq) \leq \dim(P \setminus C, \preceq) + 2$;
- if $C_0, C_1 \subseteq P$ are incomparable chains then $\dim(P, \preceq) \leq \dim(P \setminus C_0 \cup C_1, \preceq) + 2$.
- DB_{p} : if $x_0 \in P$ then $\dim(P, \preceq) \leq \dim(P \setminus \{x_0\}, \preceq) + 1$.
- $\mathsf{DBi_n}$: if n > 0 and $C_0, \ldots, C_{n-1} \subseteq P$ are n pairwise incomparable chains, then $\dim(P, \preceq) \leq \dim(P \setminus \bigcup_{i < n} C_i, \preceq) + \max\{2, n\}.$
- $\mathsf{DBc_n}$: if n > 0 and $C_0, \ldots, C_{n-1} \subseteq P$ are n chains, then $\dim(P, \preceq) \leq \dim(P \setminus \bigcup_{i < n} C_i, \preceq) + 2n$.

$\mathsf{DBi}_1 = \mathsf{DBc}_1$ is optimal

Example

Consider F_{n+2} and the chain $C = \{a_n, b_{n+1}\}$. The poset $F_{n+2} \setminus C$ is a copy of F_{n+1} with an extra comparability.

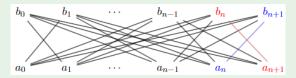


$$\dim(F_{n+2} \setminus C) = n$$
 and $\dim(F_{n+2}) = \dim(F_{n+2} \setminus C) + 2$.

DBi₂ is optimal

Example

Consider F_{n+2} , $C_0 = \{a_{n+1}, b_n\}$ and $C_1 = \{a_n, b_{n+1}\}$. The poset $F_{n+2} \setminus C_0 \cup C_1$ is a copy of F_n .



$$\dim(F_{n+2} \setminus C_0 \cup C_1) = n \text{ and }$$

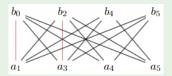
$$\dim(F_{n+2}) = \dim(F_{n+2} \setminus C_0 \cup C_1) + 2.$$

DBc₂ is optimal

Do the chains in DBi₂ really have to be incomparable?

Example

Consider F_6 , $C_0 = \{a_0, b_1\}$ and $C_1 = \{a_2, b_3\}$. The poset $F_6 \setminus C_0 \cup C_1$ is a copy of F_4 with two extra comparabilities.



$$\dim(F_6 \setminus C_0 \cup C_1) = 2 \text{ and } \dim(F_6) = \dim(F_6 \setminus C_0 \cup C_1) + 4.$$

Reverse mathematics of DBi_n and DBc_n

Dimension of Posets

2 Reverse mathematics of DBin and DBcn

3 Reverse mathematics of DB_p

Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCA₀, the following are equivalent:

- WKL₀;
- 2 every acyclic relation extends to a linear order.

Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCA₀, the following are equivalent:

- WKL₀;
- 2 every acyclic relation extends to a linear order.

Lemma

Within RCA₀, the following are equivalent:

- WKL₀;
- 2 let (P, \preceq) be a poset and $C_0, C_1 \subseteq P$ incomparable chains; there exists a linearization \preceq such that for $c_0 \in C_0$, $c_1 \in C_1$ and $x \in P$, $c_0 \mid x$ implies $x \preceq c_0$ and $c_1 \mid x$ implies $c_1 \preceq x$. $[\preceq \text{ puts } C_0 \text{ at the top and } C_1 \text{ at the bottom of } P]$

Two lemmas about linearizations

Lemma (Cholak-M-Solomon 2004)

Within RCA₀, the following are equivalent:

- $\mathbf{0}$ WKL₀;
- 2 every acyclic relation extends to a linear order.

Lemma

Within RCA $_0$, the following are equivalent:

- $\mathbf{0}$ WKL₀;
- 2 let (P, \preceq) be a poset and $C_0, C_1 \subseteq P$ incomparable chains; there exists a linearization \unlhd such that for $c_0 \in C_0$, $c_1 \in C_1$ and $x \in P$, $c_0 \mid x$ implies $x \unlhd c_0$ and $c_1 \mid x$ implies $c_1 \unlhd x$. $[\unlhd$ puts C_0 at the top and C_1 at the bottom of P]

Both lemmas are uniform: WKL_0 proves the version for countable sequences.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

Let \leq'_m put C_0 at the top and C_1 at the bottom of P. Let \leq'_{m+1} put C_1 at the top and C_0 at the bottom of P. \leq'_m and \leq'_{m+1} take care of the incomparabilities between an element of $C_0 \cup C_1$ and the elements of P.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

Let \leq_m' put C_0 at the top and C_1 at the bottom of P. Let \leq_{m+1}' put C_1 at the top and C_0 at the bottom of P. \leq_m' and \leq_{m+1}' take care of the incomparabilities between an element of $C_0 \cup C_1$ and the elements of P.

Therefore $\dim(P, \preceq) \leq m + 2$.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

Let \unlhd'_m put C_0 at the top and C_1 at the bottom of P. Let \unlhd'_{m+1} put C_1 at the top and C_0 at the bottom of P. \unlhd'_m and \unlhd'_{m+1} take care of the incomparabilities between an element of $C_0 \cup C_1$ and the elements of P.

Therefore $\dim(P, \preceq) \leq m + 2$.

Similarly one shows $WKL_0 \vdash DBi_n$ for every n > 2.

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

Let \unlhd'_m put C_0 at the top and C_1 at the bottom of P. Let \unlhd'_{m+1} put C_1 at the top and C_0 at the bottom of P. \unlhd'_m and \unlhd'_{m+1} take care of the incomparabilities between an element of $C_0 \cup C_1$ and the elements of P.

Therefore $\dim(P, \preceq) \leq m + 2$.

Similarly one shows $\mathsf{WKL}_0 \vdash \mathsf{DBi_n}$ for every n > 2.

DBi₁ follows from DBi₂ (take one of the chains to be empty).

To prove DBi_2 in WKL_0 let $C_0, C_1 \subseteq P$ be incomparable chains, and $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus C_0 \cup C_1, \preceq)$.

First extend the acyclic relation $\unlhd_i \cup \preceq$ on P to a linear order \unlhd_i' : $\unlhd_0', \ldots, \unlhd_{m-1}'$ take care of the incomparabilities between elements of $P \setminus C_0 \cup C_1$.

Let \unlhd'_m put C_0 at the top and C_1 at the bottom of P. Let \unlhd'_{m+1} put C_1 at the top and C_0 at the bottom of P. \unlhd'_m and \unlhd'_{m+1} take care of the incomparabilities between an element of $C_0 \cup C_1$ and the elements of P.

Therefore $\dim(P, \preceq) \leq m + 2$.

Similarly one shows $WKL_0 \vdash DBi_n$ for every n > 2.

DBi₁ follows from DBi₂ (take one of the chains to be empty).

To prove $\mathsf{DBc_n}$ we apply the lemma to the pairs C_i,\emptyset and \emptyset,C_i for every new chain C_i .

Let f,g be injective functions with disjoint images. We need (P,\preceq) so that every family of linearizations realizing

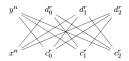
(P, \preceq) computes a set separating $\operatorname{ran}(f)$ from $\operatorname{ran}(g)$.

Let f,g be injective functions with disjoint images.

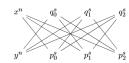
We need (P, \preceq) so that every family of linearizations realizing (P, \preceq) computes a set separating $\operatorname{ran}(f)$ from $\operatorname{ran}(g)$.

 $P=\{\,x^n,y^n:n\in\mathbb{N}\,\}\cup\{\,c_j^r,d_j^r,p_j^r,q_j^r:j<3,r\in\mathbb{N}\,\}\text{ consists of layers ordered like }\omega\colon$

- if n does not belong to the ranges of f and g then layer n consists of the antichain $\{x^n, y^n\}$;
- if n = f(r) then layer n is a copy of F_4 :



• if n = g(s) then layer n is a copy of F_4 :

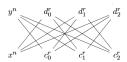


Let f,g be injective functions with disjoint images.

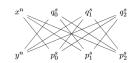
We need (P, \preceq) so that every family of linearizations realizing (P, \preceq) computes a set separating $\operatorname{ran}(f)$ from $\operatorname{ran}(g)$.

 $P=\{\,x^n,y^n:n\in\mathbb{N}\,\}\cup\{\,c_j^r,d_j^r,p_j^r,q_j^r:j<3,r\in\mathbb{N}\,\}\text{ consists of layers ordered like }\omega\colon$

- if n does not belong to the ranges of f and g then layer n consists of the antichain $\{x^n, y^n\}$;
- if n = f(r) then layer n is a copy of F_4 :



• if n = g(s) then layer n is a copy of F_4 :



Let $C=\{c_1^r,d_2^r,p_1^s,q_2^s:r,s\in\mathbb{N}\}$, which is a chain.

In $(P \setminus C, \preceq)$ each layer is either an antichain of size two or

In any case it has dimension 2.

In $(P \setminus C, \preceq)$ each layer is either an antichain of size two or

In any case it has dimension 2.

Distinct layers are linearly ordered, so that $\dim(P \setminus C, \preceq) = 2$ and two computable linearizations that realize it.

In $(P \setminus C, \preceq)$ each layer is either an antichain of size two or

In any case it has dimension 2.

Distinct layers are linearly ordered, so that $\dim(P \setminus C, \preceq) = 2$ and two computable linearizations that realize it.

By DBi_1 , $\dim(P, \preceq) \le 4$. Let $\{ \le_0, \le_1, \le_2, \le_3 \}$ realize (P, \preceq) . If $n \in \mathsf{ran}(f)$ then $|\{i < 4 : y^n \le_i x^n\}| = 1$, while if $n \in \mathsf{ran}(g)$ then $|\{i < 4 : y^n \le_i x^n\}| = 3$. $\{n : |\{i < 4 : y^n \le_i x^n\}| = 1\}$ separates $\mathsf{ran}(f)$ from $\mathsf{ran}(g)$.

The reverse mathematics of bounding theorems for chains

Theorem

Let n > 0. Within RCA₀, the following are equivalent:

- WKL₀;
- OBin;
- 3 DBc_n.

The reverse mathematics of bounding theorems for chains

Theorem

Let n > 0. Within RCA₀, the following are equivalent:

- WKL₀;
- OBin;
- 3 DBc_n.

The reversals from $\mathsf{DBi_n}$ when $n \geq 4$ require to have the poset not completely layered.

Reverse mathematics of DB_p

1 Dimension of Posets

2 Reverse mathematics of DBin and DBcn

 ${\bf 3}$ Reverse mathematics of DB_p

Let $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus \{x_0\}, \preceq)$. Let $I = \{x : x \prec x_0\}$, $F = \{y : x_0 \prec y\}$: if $x \in I$, $y \in F$ then $x \prec y$ and hence $x \vartriangleleft_i y$.

Let $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus \{x_0\}, \preceq)$. Let $I = \{x : x \prec x_0\}$, $F = \{y : x_0 \prec y\}$: if $x \in I$, $y \in F$ then $x \prec y$ and hence $x \vartriangleleft_i y$. Let $B_i \subseteq P \setminus \{x_0\}$ be \leq_i -downward closed such that $I \subseteq B_i$ and $F \cap B_i = \emptyset$.

Let $\{ \unlhd_0, \ldots, \unlhd_{m-1} \}$ realize $(P \setminus \{x_0\}, \preceq)$. Let $I = \{x : x \prec x_0\}$, $F = \{y : x_0 \prec y\}$: if $x \in I$, $y \in F$ then $x \prec y$ and hence $x \vartriangleleft_i y$. Let $B_i \subseteq P \setminus \{x_0\}$ be \unlhd_i -downward closed such that $I \subseteq B_i$ and $F \cap B_i = \emptyset$.

Define linearizations \unlhd_0' and \unlhd_0'' of (P, \preceq) by:

$$I \vartriangleleft_0' \{x_0\} \vartriangleleft_0' P \setminus \{x_0\} \cup I;$$

$$P \setminus \{x_0\} \cup F \vartriangleleft_0'' \{x_0\} \vartriangleleft_0'' F;$$

(each piece ordered by \leq_0).

 \leq_0' and \leq_0'' take care of the incomparabilities between x_0 and the elements of P. Moreover, on each pair in $P \setminus \{x_0\}$ at least one of \leq_0' and \leq_0'' preserves the order of \leq_0 .

Let $\{ \unlhd_0, \ldots, \unlhd_{m-1} \}$ realize $(P \setminus \{x_0\}, \preceq)$. Let $I = \{x : x \prec x_0\}$, $F = \{y : x_0 \prec y\}$: if $x \in I$, $y \in F$ then $x \prec y$ and hence $x \vartriangleleft_i y$. Let $B_i \subseteq P \setminus \{x_0\}$ be \unlhd_i -downward closed such that $I \subseteq B_i$ and $F \cap B_i = \emptyset$.

Define linearizations \leq_0' and \leq_0'' of (P, \preceq) by:

$$I \vartriangleleft_0' \{x_0\} \vartriangleleft_0' P \setminus \{x_0\} \cup I;$$

$$P \setminus \{x_0\} \cup F \vartriangleleft_0'' \{x_0\} \vartriangleleft_0'' F;$$

(each piece ordered by \leq_0).

 \leq_0' and \leq_0'' take care of the incomparabilities between x_0 and the elements of P. Moreover, on each pair in $P \setminus \{x_0\}$ at least one of \leq_0' and \leq_0'' preserves the order of \leq_0 .

For $i=1,\dots,m-1$ define a linearization \unlhd_i' of (P,\preceq) by

$$B_i \leq_i' \{x_0\} \leq_i' P \setminus \{x_0\} \cup B_i$$

(each piece ordered by \leq_i).

Let $\{ \leq_0, \ldots, \leq_{m-1} \}$ realize $(P \setminus \{x_0\}, \preceq)$. Let $I = \{x : x \prec x_0\}$, $F = \{y : x_0 \prec y\}$: if $x \in I$, $y \in F$ then $x \prec y$ and hence $x \vartriangleleft_i y$.

Let $B_i \subseteq P \setminus \{x_0\}$ be \leq_i -downward closed such that $I \subseteq B_i$ and $F \cap B_i = \emptyset$.

Define linearizations \leq_0' and \leq_0'' of (P, \preceq) by:

$$I \vartriangleleft_0' \{x_0\} \vartriangleleft_0' P \setminus \{x_0\} \cup I;$$
$$P \setminus \{x_0\} \cup F \vartriangleleft_0'' \{x_0\} \vartriangleleft_0'' F;$$

(each piece ordered by \leq_0).

 \leq_0' and \leq_0'' take care of the incomparabilities between x_0 and the elements of P. Moreover, on each pair in $P \setminus \{x_0\}$ at least one of \leq_0' and \leq_0'' preserves the order of \leq_0 .

For $i=1,\ldots,m-1$ define a linearization \unlhd_i' of (P,\preceq) by $B_i \unlhd_i' \{x_0\} \unlhd_i' P \setminus \{x_0\} \cup B_i$ (each piece ordered by \unlhd_i).

 $\{ \trianglelefteq_0', \trianglelefteq_0'', \trianglelefteq_1', \dots, \trianglelefteq_{m-1}' \}$ realize (P, \preceq)

The key step of the previous proof is obtaining B_i for i < m, which exist by a separation principle.

The key step of the previous proof is obtaining B_i for i < m, which exist by a separation principle.

Lemma (Frittaion-M 2014)

Within RCA₀, the following are equivalent:

- $\mathbf{0}$ WKL₀;
- 2 if (P, \preceq) is a poset and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \npreceq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

The key step of the previous proof is obtaining B_i for i < m, which exist by a separation principle.

Lemma (Frittaion-M 2014)

Within RCA₀, the following are equivalent:

- $\mathbf{0}$ WKL₀;
- 2 if (P, \preceq) is a poset and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \not\preceq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

Applying (2) to the disjoint union of (P, \leq_0) , ..., (P, \leq_{m-1}) we get the B_i 's.

The key step of the previous proof is obtaining B_i for i < m, which exist by a separation principle.

Lemma (Frittaion-M 2014)

Within RCA₀, the following are equivalent:

- $\mathbf{0}$ WKL₀;
- 2 if (P, \preceq) is a poset and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \not\preceq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

Applying (2) to the disjoint union of (P, \leq_0) , ..., (P, \leq_{m-1}) we get the B_i 's.

However to prove the reversal of the lemma we used a poset with plenty of infinite antichains (in I, F and $P \setminus I \cup F$). Here we are applying (2) to a poset of width m, so it is possible that the full strength of WKL $_0$ is not needed.

A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCA₀ proves that if (P, \unlhd) is a linear order and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \not \trianglelefteq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCA₀ proves that if (P, \unlhd) is a linear order and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \not \trianglelefteq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

The proof is non-uniform:

- if there exists $z \in P$ such that $\forall x \in I \ \forall y \in F \ x \lhd z \lhd y$ then we can take $B = \{ \ u \in P : u \unlhd z \};$
- if z does not exists then for every $u \in P$ then

$$\exists x \in I \, u \trianglelefteq x \iff \forall y \in F \, u \vartriangleleft y$$

and we can define B by Δ_1^0 -comprehension.

A linear separation principle

Lemma (Linear Separation Lemma LSL)

RCA₀ proves that if (P, \unlhd) is a linear order and $I, F \subseteq P$ are such that $\forall x \in I \ \forall y \in F \ y \not \trianglelefteq x$ then there exists a downward closed set $B \subseteq P$ such that $I \subseteq B$ and $B \cap F = \emptyset$.

The proof is non-uniform:

- if there exists $z \in P$ such that $\forall x \in I \ \forall y \in F \ x \lhd z \lhd y$ then we can take $B = \{ u \in P : u \unlhd z \};$
- if z does not exists then for every $u \in P$ then

$$\exists x \in I \ u \leq x \iff \forall y \in F \ u \vartriangleleft y$$

and we can define B by Δ_1^0 -comprehension.

To prove DB_p we use LSL m times, asking m Σ^0_2 questions. By bounded Σ^0_2 -comprehension, i.e. Σ^0_2 -induction, we know which of the two definitions of B_i we must use (in the first case the least Π^0_1 principle finds the appropriate z).

The upper bound for DB_p

Theorem

The disjunction of WKL₀ and RCA₀ + $I\Sigma_2^0$ proves DB_p.

The upper bound for DB_p

Theorem

The disjunction of WKL₀ and RCA₀ + $I\Sigma_2^0$ proves DB_p.

In the literature there are a few statements known to be equivalent to $\mathsf{WKL}_0 \vee \mathsf{I}\Sigma^0_2$:

- the existence for all n of n-fold iterates of continuous mappings of the closed unit interval into itself (Friedman-Simpson-Yu, 1993);
- every complete consistent theory with countably many types and whose types have the pairwise full amalgamation property has a saturated model (Belanger, 2015) [the equivalence is over RCA₀ + B Σ_2^0 , and B Σ_2^0 cannot be removed];
- some implications between amalgamation properties of theories (Belanger, 2015).

The upper bound for DB_p

Theorem

The disjunction of WKL₀ and RCA₀ + $I\Sigma_2^0$ proves DB_p.

In the literature there are a few statements known to be equivalent to WKL $_0 \vee I\Sigma_2^0$:

- the existence for all n of n-fold iterates of continuous mappings of the closed unit interval into itself (Friedman-Simpson-Yu, 1993);
- every complete consistent theory with countably many types and whose types have the pairwise full amalgamation property has a saturated model (Belanger, 2015) [the equivalence is over RCA₀ + B Σ_2^0 , and B Σ_2^0 cannot be removed];
- some implications between amalgamation properties of theories (Belanger, 2015).

So far we haven't been able to exploit these results or mimic their proofs to show that DB_p is equivalent to WKL₀ \vee I Σ_2^0 .

The end

Thank you for your attention!