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This talk is dedicated to Jeff Hirst.

As the first talk at Hirstfest, I thought I would start with the
beginning: a topic from his PhD thesis.

I will conclude with some remarks on his publications and
collaborators, several of whom are here today for Hirstfest.

MathSciNet currently lists 52 publications from Jeff Hirst,
with 32 total coauthors.
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Introduction

I will attempt a comprehensive picture of work related to Hindman’s
theorem from the last 40+ years.

Numerous logicians have worked successfully and unsuccessfully
on this theorem.

Several key results are due to Jeff Hirst and coauthors.

There is much more in the extensive literature than I could discuss
in this talk. I apologize for any unintentional omissions.
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Hindman’s theorem

Hindman proved the following theorem in 1974.

Theorem (HT: Hindman’s Finite Sums Theorem)
IfN is colored with finitely many colors, there is an infinite A ⊆N such
that, for every finite nonempty F ⊆ A, the number

∑
F has the same

color.

The conclusion states that the set FS(A) of finite sums of distinct
elements of A is monochromatic.
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Early history

The finitary analog of Hindman’s theorem, in which the set A

must be arbitrarily large rather than finite, is known as
Folkman’s theorem.

This analog was proved independently by several individuals
ca. 1968–1970, and named after Folkman by Graham, Rothschild,
and Spencer.

Around this time, HT was stated as a conjecture by
Graham and Rothschild.

This early history is described by Hindman (2005).
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Galvin’s question

In the early 1970s, Galvin realized there is a straightforward proof of
HT from the existence of an almost translation invariant ultrafilter.

É An ultrafilter on N is a maximal subset F of P (N) such that the
intersection of any nonempty family from F is nonempty.

É An ultrafilter F is almost translation invariant (a.t.i.) if,
whenever A ∈F, the set {x ∈N : A− x ∈F} is in F.
Here A− x = {y : y + x ∈ A}.

Galvin posed the question of whether there is an a.t.i. ultrafilter
and Erdös circulated the question.
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Hindman’s proof

Hindman was unable to prove that a.t.i. ultrafilters exist in ZFC.

Hewas able to prove that HT and the continuum hypothesis
together imply a.t.i. ultrafilters exist.

Hindman then obtained a direct combinatorial proof of HT.

“If the reader has a graduate student that she wants to
punish, she shouldmake him read and understand that
original proof...” (Hindman 2005)
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Hirst’s thesis

In his thesis Combinatorics in Subsystems of Second-Order Arithmetic,
Hirst made important contributions related to several theorems:

É Hall’s marriage theorem

É Ramsey’s theorem

É Hindman’s theorem
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Hirst’s thesis

The work on Hindman’s theorem had several parts:

É A collaboration of Blass, Hirst, and Simpson the provided the
still-best upper bounds for the strength of Hindman’s theorem.

É A reformulation of Hindman’s theorem in terms of ideals on
Boolean rings.

É A study of Milliken’s theorem, a generalization equivalent to an
iterated version of Hindman’s theorem.
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Subsystems of second order arithmetic

É RCA0 is the standard base system including∆0
1 comprehension

and Σ0
1 induction.

É ACA0 is RCA0 plus an axiom stating the Turing jump TJ(A)
exists for every A ⊆N.
É ACA+0 is RCA0 plus an axiom stating that the Turing jumpmay

be iterated along N. Roughly: TJ(ω)(A) exists for all A ⊆N.
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Bounds on the strength of HT

Let HT2 be the restriction of HT to two colors.

Theorem (Blass, Hirst, and Simpson 1987)
É HT is provable inACA+0 .

É HT2 impliesACA0 over RCA0.

Theorem (Blass, Hirst, and Simpson 1987)
É Every computable instance C of HT2 has a solution computable

from C (ω+1).

É There is a computable instance C of HT2 such that every solution
to C computes ;′.
É There is a computable instance of HT2 with no∆0

2 solution.
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The reversal

We sketch the construction of a computable 2-coloring of N
so that every solution to HT computes ;′.
Choose e so that ;′ =We = K , and for each t let K (s ) =We ,s .

For n = 2n1 + · · ·+2nk :

É View as a code for the sequence s (n ) = (n1, . . . , nk ).

É Let λ(n ) = n1 and µ(n ) = nk .

É The pairs (ni , ni+1) are the gaps of n .

Note: if µ(n )<λ(m ) then the gaps of n +m are the gaps of n ,
the gaps of m , and the new gap (µ(n ),λ(m )).



Introduction Early work Ultrafilters Variations Remarks

Gaps

A gap (a , b ) of a number n is defined to be:

É short if there is an x ≤ a such that x ∈ K and x 6∈ K (b ).

É very short if there is an x ≤ a such that x ∈ K (µ(n ))
and x 6∈ K (b ).

N
0 x a b µ(n )

gap (a , b ) short gap

very short gap



Introduction Early work Ultrafilters Variations Remarks

Coloring

Define

É SG(n ) is the number of short gaps of n .

É VSG(n ) is the number of very short gaps of n .

Because VSG(n ) is computable from n , the following
coloring c is computable:

c (n ) = VSG(n ) mod 2
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The reversal

Given any solution A to HT for the coloring c , we can compute
another solution B ⊆ FS(A) with apartness: so that µ(m )<λ(n )
whenever m < n are in B .

Claim 1. For every m ∈ FS(B ), SG(m ) is even.

This follows from a parity argument and some basic computability
analysis of the coloring.
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The reversal

Claim 2. If m < n are in B and x ≤µ(m ) then x ∈ K if and only if
x ∈ K (λ(n )).

The key point is that, for this to fail, the gap (µ(m ),λ(n ))would be
short. But this would mean

SG(m +n ) = SG(m )+1+SG(n ),

which is impossible because the three SG terms are all even.
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Alternative proofs

There are three additional proofs of HT, each of which seems to
require stronger systems.

É A simplified inductive proof due to Baumgartner.

É A proof using ultrafilters, originally due to Galvin and Glazer.

É A proof of HT as a consequence of the Auslander–Ellis
theorem, which is proved using higher-order methods.

Each of these has been studied in the context of reverse
mathematics.
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Baumgartner’s proof

Baumgartner (1974) produced a simpler, still inductive
proof of HT.

Blass, Hirst, and Simpson showed this proof can be formalized
in the system Π1

2-TI0, which is far stronger than ACA+0 .
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Topological dynamics

Blass, Hirst, and Simpson also study a proof of a theorem of
topological dynamics.

We view a compact metric space X and a continuous f : X → X

as a compact dynamical system.

É A point z in a compact dynamical system is uniformly recurrent
if for all ϵ > 0 the set {n : d ( f n (x ), x )< ϵ} has bounded gaps.

É Two points y , z are proximal if for all ϵ > 0 there are infinitely
many n such that d ( f n (y ), f n (z ))< ϵ.
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The Auslander–Ellis theorem

Theorem (AET: Auslander and Ellis)
If (X , f ) is a compact dynamical system, for every y ∈ X there is a
z ∈ X such that y is proximal to z and z is uniformly recurrent.

In the 1970s, Furstenberg showed that HT has a straightforward
proof using AET as the key lemma.

The textbook proof of AET is higher-order and not clearly
formalizable in second order arithmetic.

Blass, Hirst, and Simpson showed, using their analysis of HT, that
AET is provable in ACA+0 , and hence does not require set-theoretic
methods.
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The Galvin–Glazer proof

In 1975, by applying knowledge from the theory of topological
semigroups, Glazer showed that almost translation invariant
ultrafilters exist.

The proof is based on the fact that the set βN of ultrafilters on N
is a topological semigroup under a particular operation.

Glazer was familiar with longstanding results about topological
semigroups that imply the existence of idempotent elements.
In this case, those will be a.t.i. ultrafilters.

Read directly, this proof uses fourth order objects: closed sets of
ultrafilters on N.
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Ultrafilters and reverse mathematics

Ultrafilters on N are third-order objects, which cannot be directly
represented in second order arithmetic.

There are two natural paths forward:

É Stay inside second order arithmetic: study countable subsets
of ultrafilters rather than actual ultrafilters.

É Study ultrafilters using fragments of third order arithmetic.

Both of these paths have been explored.
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Countable subalgebras

Hirst (2004) explored the possibility of miniaturizing the ultrafilter
proof of HT into second order arithmetic.

The key idea was to work with countable subalgebras of P(N).
These subalgebras can be easily formalized in ACA0.
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Countable subalgebras

In this context, Hirst obtained an equivalence between IHT and the
existence of certain ultrafilters,

Theorem (Hirst 2004)
The following are equivalent over RCA0:

É Every countable downward translation algebra has an almost
translation invariant ultrafilter.

É Iterated Hindman’s Theorem (IHT2): Given a sequence Ci of
2-colorings ofN, there is an infinite sequence 〈xi 〉 of numbers
such that, for each i , FS({x j : j > i }) is monochromatic for C j .
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A lightweight ultrafilter proof

Towsner (2011) showed that the standard Galvin–Glazer proof can
be miniaturized in a way that can be formalized in second order
arithmetic.

The key idea is to replace applications of Zorn’s lemma with
transfinite inductions.

This argument lies, in a sense, between the Galvin–Glazer proof
and the Baumgartner proof.
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A simpler inductive proof

Towsner (2012) presented a simplified inductive proof of HT in
ACA+0 . This can be viewed as a culmination of miniaturizing the
Galvin–Glazer proof into Z2, extending the previous result.

Towsner (2012) and Liao (2024) improved the lower bound on the
noncomputability of solutions.

Theorem (Towsner 2012)
There is a computable instance of HT2 with noΣ0

2 solution.

Theorem (Liao 2024)
There is a computable instance of HT4 with noΠ0

3 solution.
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Beyond second order arithmetic

Kreuzer (2012) and Towsner (2014) and independently studied the
second option for handling ultrafilters: move beyond second order
arithmetic.1

Their work was foreshadowed in previous work of Enyat (2006)
on generic ultrafilters over models of ACA0.

1Both authors submitted preprints to the ArXiV in September 2011.
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Ultrafilters in higher-order arithmetic

Kreuzer worked directly in higher-order arithmetic using systems
such as ACAω0 that are conservative over their corresponding
second order systems.

É (U) states that a nonprincipal ultrafilter exists
É (Uidem) states that an idempotent ultrafilter exists

É (µ) is a standard axiom which allows for the uniform
computation of Turing jumps in higher-order arithmetic

Theorem (Kreuzer 2012)
ACAω0 + (U) isΠ

1
2 conservative overACA

ω
0 .

Theorem (Kreuzer 2015)
ACAω0 + (µ) + IHT+ (Uidem) isΠ1

2 conservative overACA
ω
0 + IHT.
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Conservativity over second order systems

Towsner (2014) studied systems that extend second order
arithmetic with:

É An added third-order predicateU for a subset of P (N)
and some associated syntax.

É An axiom ∃U stating thatU defines a nonprincipal ultrafilter
on N.

Theorem (Towsner 2014)
Let T ∈ {ACA0,ATR0,Π1

1-CA0}. Then T +∃U is conservative over T .
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Conservativity over second order systems

Montálban and Shore answered a question of Towsner by showing
that the existence of an idempotent ultrafilter is conservative over a
number of systems.

Theorem (Montálban and Shore 2018)
É The assertion ∃Uidem is conservative overACA0+ IHT,ATR0,
Π1

1-CA0 andΠ1
2-CA0.

É TheMilliken–Taylor theorem (∀k )MT(k ) is provable in (ACA+0 )
′.

The second result is related to the result of Hirst (2004) showing IHT
is equivalent to MT(k ) for each k ≥ 3.
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Rado’s path decomposition theorem

Cholak and coauthors observed that conservation results can be
applied to an ultrafilter-based proof to obtain a proof in second
order arithmetic.

Observation (Cholak, Igusa, Patey, Soskova & Turetsky 2019)
The Rado Path Decomposition theorem is provable inACA0.

The authors go on to show that the theorem is equivalent to ACA0

over RCA0.
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Nonprincipal ultrafilters

Eastaugh (2024) studied the strength of the existence of a
nonprincipal ultrafilter on a countable atomic algebra.

Theorem (Eastaugh 2024)
The following are equivalent over RCA0:

É ACA0.

É For every infinite V ⊆N and every atomic countable algebra A

over V , there exists a non-principal ultrafilterU on A.

The theorem is part of an analysis of Arrow’s voting theorem.
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Theorem (Summary of the literature)
The following are equivalent over RCA0.

Each is provable inACA+0 and impliesACA0 over RCA0.

É IHT: For every sequence of finite colorings 〈Ci | i ∈N〉 there is an
increasing sequence 〈xi ∈N | i ∈N〉 such that for every j ∈N the
set {xi | i > j } satisfies Hindman’s Theorem for Ci .

É IHT restricted to 2-colorings.

É Every countable downward translation algebra has an almost
downward translation invariant ultrafilter.

É The Auslander–Ellis theorem.

É For each k ≥ 3, the principleMT(k ).



Introduction Early work Ultrafilters Variations Remarks

Restrictions

One way to restrict Hindman’s theorem is to ask for only certain
finite sums to be monochromatic.

É HT≤n
k states that, given a k -coloring of N, there is an infinite set

A so that all sums of ≤ n elements of A have the same color.

É HT=n
k states that, given a k -coloring of N, there is an infinite set

A so that all sums of n elements of A have the same color.

A set A has b -apartness if whenever x < y ∈ A and x , y are
interpreted as sequences base b , we have µ(x )<λ(y ).
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Restrictions: bounded sums

Carlucci (2021) provides an overview of work on restrictions of HT.

Theorem (Dzhafarov, Jockusch, Solomon &Westrick 2017)
HT≤3 impliesACA0 over RCA0.

Theorem (Carlucci, Kołodziejczyk, Lepore & Zdanowski 2020)
É HT≤2

4 impliesACA0 over RCA0.

É HT=3 with apartness impliesACA0 over RCA0.
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Restriction: exact sums

For sums of exactly 2 or 3 elements, HT is related to the rainbow
Ramsey theorem RRT and the increasing polarized Ramsey theorem
IPT of Dzhafarov and Hirst (2011)

Theorem (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon &
Westrick 2019)
Over RCA0,HT=2

2 implies the rainbow Ramsey theorem RRT2
2.

Theorem (Carlucci, Kołodziejczyk, Lepore & Zdanowski 2020)

Over RCA0,HT=2
2 with apartness implies IPT2

2.

The role of apartness is interesting, as RRT2
2 is weaker than IPT2

2.
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Variation: thin solutions

Hirschfeldt and Reitzes (2022) studied a thin version of HT.

Given a coloring c : N→N, a set B is thin if at least one color is
omitted from c (B ).

The principle thin-HT states that given c : N→N, there is an infinite
set A such that FS(A) is thin for c .

Theorem (Hirschfeldt and Reitzes 2022)
É There is a computable instance of thin-HT such that every solution

computes ;′.
É thin-HT impliesACA0 over RCA0+ IΣ0

2.

É RRT2
2 is Weihrauch reducible to a strengthened version of

thin-HT=2.
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Hindman’s theorem

Much like Ramsey’s theorem, Hindman’s theorem has been a source
of numerous threads in reverse mathematics.

É The precise strength of HT and IHT remain longstanding open
problems.

É The various proofs of HT have inspired their own work on
formalizing ultrafilter methods into arithmetic.

É Restrictions of HT also lead to interesting combinatorial results
and distinctions.
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Reflections on my work with Jeff Hirst

Jeff and I have been coauthors on five papers, including
combinatorics, proof theory, and Weihrauch reducibility.

I had the opportunity to work with Jeff at Appalachian State in
2005–2006 as the first of a series of “postdocs” there.

It has been a pleasure to work with Jeff as a colleague and friend
throughout my career.
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